These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 9241880)

  • 1. Sea-ice production and transport of pollutants in the Laptev Sea, 1979-1993.
    Rigor I; Colony R
    Sci Total Environ; 1997 Aug; 202(1-3):89-110. PubMed ID: 9241880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential for rapid transport of contaminants from the Kara Sea.
    Pfirman SL; Kögeler JW; Rigor I
    Sci Total Environ; 1997 Aug; 202(1-3):111-22. PubMed ID: 9241881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of potential transport of pollutants into the Barents Sea via sea ice--an observational approach.
    Korsnes R; Pavlova O; Godtliebsen F
    Mar Pollut Bull; 2002 Sep; 44(9):861-9. PubMed ID: 12405210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arctic Ocean sea ice drift origin derived from artificial radionuclides.
    Cámara-Mor P; Masqué P; Garcia-Orellana J; Cochran JK; Mas JL; Chamizo E; Hanfland C
    Sci Total Environ; 2010 Jul; 408(16):3349-58. PubMed ID: 20434194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of sea ice in the fate of contaminants in the Arctic Ocean: plutonium atom ratios in the Fram Strait.
    Masqué P; Cochran JK; Hebbeln D; Hirschberg DJ; Dethleff D; Winkler A
    Environ Sci Technol; 2003 Nov; 37(21):4848-54. PubMed ID: 14620809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arctic warming interrupts the Transpolar Drift and affects long-range transport of sea ice and ice-rafted matter.
    Krumpen T; Belter HJ; Boetius A; Damm E; Haas C; Hendricks S; Nicolaus M; Nöthig EM; Paul S; Peeken I; Ricker R; Stein R
    Sci Rep; 2019 Apr; 9(1):5459. PubMed ID: 30940829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anthropogenic radioactivity in the Arctic Ocean--review of the results from the joint German project.
    Nies H; Harms IH; Karcher MJ; Dethleff D; Bahe C
    Sci Total Environ; 1999 Sep; 237-238():181-91. PubMed ID: 10568275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rise and fall of sea ice production in the Arctic Ocean's ice factories.
    Cornish SB; Johnson HL; Mallett RDC; Dörr J; Kostov Y; Richards AE
    Nat Commun; 2022 Dec; 13(1):7800. PubMed ID: 36528641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of diet and sea ice drift on organochlorine bioaccumulation in Arctic ice-associated amphipods.
    Borgå K; Poltermann M; Polder A; Pavlova O; Gulliksen B; Gabrielsen GW; Skaare JU
    Environ Pollut; 2002; 117(1):47-60. PubMed ID: 11843537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of sea ice in the Arctic.
    Perovich DK; Richter-Menge JA
    Ann Rev Mar Sci; 2009; 1():417-41. PubMed ID: 21141043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shallow methylmercury production in the marginal sea ice zone of the central Arctic Ocean.
    Heimbürger LE; Sonke JE; Cossa D; Point D; Lagane C; Laffont L; Galfond BT; Nicolaus M; Rabe B; van der Loeff MR
    Sci Rep; 2015 May; 5():10318. PubMed ID: 25993348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environment and biology of the Kara Sea: a general view for contamination studies.
    Miquel JC
    Mar Pollut Bull; 2001; 43(1-6):19-27. PubMed ID: 11601532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mercury distribution and transport across the ocean-sea-ice-atmosphere interface in the Arctic Ocean.
    Chaulk A; Stern GA; Armstrong D; Barber DG; Wang F
    Environ Sci Technol; 2011 Mar; 45(5):1866-72. PubMed ID: 21288021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of current natural and anthropogenic radionuclide activity concentrations in the bottom sediments from the Barents Sea.
    Yakovlev E; Puchkov A
    Mar Pollut Bull; 2020 Nov; 160():111571. PubMed ID: 32861940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Comparative analysis of sea-ice diatom species composition in the seas of Russian Arctic].
    Il'iash L; Zhitina LS
    Zh Obshch Biol; 2009; 70(2):143-54. PubMed ID: 19425351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Responses of Arctic sea ice to stratospheric ozone depletion.
    Zhang J; Tian W; Pyle JA; Keeble J; Abraham NL; Chipperfield MP; Xie F; Yang Q; Mu L; Ren HL; Wang L; Xu M
    Sci Bull (Beijing); 2022 Jun; 67(11):1182-1190. PubMed ID: 36545984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-scale oil-in-ice experiment in the Barents Sea: monitoring of oil in water and MetOcean interactions.
    Faksness LG; Brandvik PJ; Daae RL; Leirvik F; Børseth JF
    Mar Pollut Bull; 2011 May; 62(5):976-84. PubMed ID: 21396663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arctic ice cover, ice thickness and tipping points.
    Wadhams P
    Ambio; 2012 Feb; 41(1):23-33. PubMed ID: 22259152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclear Reprocessing Tracers Illuminate Flow Features and Connectivity Between the Arctic and Subpolar North Atlantic Oceans.
    Casacuberta N; Smith JN
    Ann Rev Mar Sci; 2023 Jan; 15():203-221. PubMed ID: 36055974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polar oceans in a changing climate.
    Barnes DKA; Tarling GA
    Curr Biol; 2017 Jun; 27(11):R454-R460. PubMed ID: 28586678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.