These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 9242267)
21. Neuronal network analysis based on arrival times of active-sleep specific inhibitory postsynaptic potentials in spinal cord motoneurons of the cat. Engelhardt JK; Chase MH Brain Res; 2001 Jul; 908(1):75-85. PubMed ID: 11457433 [TBL] [Abstract][Full Text] [Related]
22. The postsynaptic inhibitory control of lumbar motoneurons during the atonia of active sleep: effect of strychnine on motoneuron properties. Soja PJ; López-Rodríguez F; Morales FR; Chase MH J Neurosci; 1991 Sep; 11(9):2804-11. PubMed ID: 1880550 [TBL] [Abstract][Full Text] [Related]
23. Renshaw cells are inactive during motor inhibition elicited by the pontine microinjection of carbachol. Morales FR; Engelhardt JK; Pereda AE; Yamuy J; Chase MH Neurosci Lett; 1988 Apr; 86(3):289-95. PubMed ID: 3380320 [TBL] [Abstract][Full Text] [Related]
24. Active electrophysiological properties of spinal motoneurons in aged cats following axotomy. Yamuy J; Englehardt JK; Morales FR; Chase MH Neurobiol Aging; 1992; 13(2):231-8. PubMed ID: 1522940 [TBL] [Abstract][Full Text] [Related]
25. Effects of chronic spinalization on ankle extensor motoneurons. II. Motoneuron electrical properties. Hochman S; McCrea DA J Neurophysiol; 1994 Apr; 71(4):1468-79. PubMed ID: 8035228 [TBL] [Abstract][Full Text] [Related]
26. Postsynaptic inhibition of hypoglossal motoneurons produces atonia of the genioglossal muscle during rapid eye movement sleep. Fung SJ; Chase MH Sleep; 2015 Jan; 38(1):139-46. PubMed ID: 25325470 [TBL] [Abstract][Full Text] [Related]
27. Evidence that glycine mediates the postsynaptic potentials that inhibit lumbar motoneurons during the atonia of active sleep. Chase MH; Soja PJ; Morales FR J Neurosci; 1989 Mar; 9(3):743-51. PubMed ID: 2926479 [TBL] [Abstract][Full Text] [Related]
28. Crossed and uncrossed segmental synaptic effects on rectus abdominis motoneurons from cutaneous and cutaneous-muscle nerve in spinal cats and alpha-chloralose-anesthetized cats. Nakata A; Jozaki A; Tokuriki M J Vet Med Sci; 1994 Jun; 56(3):511-6. PubMed ID: 7948381 [TBL] [Abstract][Full Text] [Related]
29. Aging of motoneurons and synaptic processes in the cat. Chase MH; Morales FR; Boxer PA; Fung SJ Exp Neurol; 1985 Nov; 90(2):471-8. PubMed ID: 2996926 [TBL] [Abstract][Full Text] [Related]
30. Effects of chronic spinalization on ankle extensor motoneurons. III. Composite Ia EPSPs in motoneurons separated into motor unit types. Hochman S; McCrea DA J Neurophysiol; 1994 Apr; 71(4):1480-90. PubMed ID: 8035229 [TBL] [Abstract][Full Text] [Related]
31. Hypoglossal motoneurons are postsynaptically inhibited during carbachol-induced rapid eye movement sleep. Yamuy J; Fung SJ; Xi M; Morales FR; Chase MH Neuroscience; 1999; 94(1):11-5. PubMed ID: 10613491 [TBL] [Abstract][Full Text] [Related]
32. Fluctuations of excitability in the monosynaptic reflex pathway to lumbar motoneurons in the cat. Gossard JP; Floeter MK; Kawai Y; Burke RE; Chang T; Schiff SJ J Neurophysiol; 1994 Sep; 72(3):1227-39. PubMed ID: 7807207 [TBL] [Abstract][Full Text] [Related]
33. Effects of chronic spinalization on ankle extensor motoneurons. I. Composite monosynaptic Ia EPSPs in four motoneuron pools. Hochman S; McCrea DA J Neurophysiol; 1994 Apr; 71(4):1452-67. PubMed ID: 8035227 [TBL] [Abstract][Full Text] [Related]
34. Suppression of hypoglossal motoneurons during the carbachol-induced atonia of REM sleep is not caused by fast synaptic inhibition. Kubin L; Kimura H; Tojima H; Davies RO; Pack AI Brain Res; 1993 May; 611(2):300-12. PubMed ID: 8334524 [TBL] [Abstract][Full Text] [Related]
35. Changes in the excitability of hindlimb motoneurons during muscular atonia induced by stimulating the pedunculopontine tegmental nucleus in cats. Takakusaki K; Habaguchi T; Saitoh K; Kohyama J Neuroscience; 2004; 124(2):467-80. PubMed ID: 14980396 [TBL] [Abstract][Full Text] [Related]
36. Induction of active (REM) sleep and motor inhibition by hypocretin in the nucleus pontis oralis of the cat. Xi MC; Fung SJ; Yamuy J; Morales FR; Chase MH J Neurophysiol; 2002 Jun; 87(6):2880-8. PubMed ID: 12037191 [TBL] [Abstract][Full Text] [Related]
37. Effect of stimulation of the nucleus reticularis gigantocellularis on the membrane potential of cat lumbar motoneurons during sleep and wakefulness. Chase MH; Morales FR; Boxer PA; Fung SJ; Soja PJ Brain Res; 1986 Oct; 386(1-2):237-44. PubMed ID: 3779411 [TBL] [Abstract][Full Text] [Related]
38. Declining inhibition elicited in cat lumbar motoneurons by repetitive stimulation of group II muscle afferents. Lafleur J; Zytnicki D; Horcholle-Bossavit G; Jami L J Neurophysiol; 1993 Nov; 70(5):1805-10. PubMed ID: 8294955 [TBL] [Abstract][Full Text] [Related]
39. Effect of inhibitory amino acid antagonists on IPSPs induced in lumbar motoneurons upon stimulation of the nucleus reticularis gigantocellularis during active sleep. Soja PJ; Morales FR; Baranyi A; Chase MH Brain Res; 1987 Oct; 423(1-2):353-8. PubMed ID: 3676812 [TBL] [Abstract][Full Text] [Related]
40. Topography of recurrent inhibitory postsynaptic potentials between individual motoneurons in the cat. McCurdy ML; Hamm TM J Neurophysiol; 1994 Jul; 72(1):214-26. PubMed ID: 7965006 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]