BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 9242275)

  • 1. Descending control of turning locomotor activity in larval lamprey: neurophysiology and computer modeling.
    McClellan AD; Hagevik A
    J Neurophysiol; 1997 Jul; 78(1):214-28. PubMed ID: 9242275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling of spinal locomotor networks in larval lamprey revealed by receptor blockers for inhibitory amino acids: neurophysiology and computer modeling.
    Hagevik A; McClellan AD
    J Neurophysiol; 1994 Oct; 72(4):1810-29. PubMed ID: 7823103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lateral turns in the Lamprey. I. Patterns of motoneuron activity.
    Fagerstedt P; Ullén F
    J Neurophysiol; 2001 Nov; 86(5):2246-56. PubMed ID: 11698515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time course of locomotor recovery and functional regeneration in spinal cord-transected lamprey: in vitro preparations.
    McClellan AD
    J Neurophysiol; 1994 Aug; 72(2):847-60. PubMed ID: 7983540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coordination of spinal locomotor activity in the lamprey: long-distance coupling of spinal oscillators.
    McClellan AD; Hagevik A
    Exp Brain Res; 1999 May; 126(1):93-108. PubMed ID: 10333010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coordination of locomotor activity in the lamprey: role of descending drive to oscillators along the spinal cord.
    Hagevik A; McClellan AD
    Exp Brain Res; 1999 Oct; 128(4):481-90. PubMed ID: 10541742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elimination of Left-Right Reciprocal Coupling in the Adult Lamprey Spinal Cord Abolishes the Generation of Locomotor Activity.
    Messina JA; St Paul A; Hargis S; Thompson WE; McClellan AD
    Front Neural Circuits; 2017; 11():89. PubMed ID: 29225569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity-dependent modulation of adaptation produces a constant burst proportion in a model of the lamprey spinal locomotor generator.
    Ullström M; Kotaleski JH; Tegnér J; Aurell E; Grillner S; Lansner A
    Biol Cybern; 1998 Jul; 79(1):1-14. PubMed ID: 9742673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disruption of left-right reciprocal coupling in the spinal cord of larval lamprey abolishes brain-initiated locomotor activity.
    Jackson AW; Horinek DF; Boyd MR; McClellan AD
    J Neurophysiol; 2005 Sep; 94(3):2031-44. PubMed ID: 16000521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms for lateral turns in lamprey in response to descending unilateral commands: a modeling study.
    Kozlov AK; Ullén F; Fagerstedt P; Aurell E; Lansner A; Grillner S
    Biol Cybern; 2002 Jan; 86(1):1-14. PubMed ID: 11918208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Descending control and sensory gating of 'fictive' swimming and turning responses elicited in an in vitro preparation of the lamprey brainstem/spinal cord.
    McClellan AD
    Brain Res; 1984 Jun; 302(1):151-62. PubMed ID: 6733501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanosensory inputs to the central pattern generators for locomotion in the lamprey spinal cord: resetting, entrainment, and computer modeling.
    McClellan AD; Jang W
    J Neurophysiol; 1993 Dec; 70(6):2442-54. PubMed ID: 8120592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of excitatory amino acids in brainstem activation of spinal locomotor networks in larval lamprey.
    Hagevik A; McClellan AD
    Brain Res; 1994 Feb; 636(1):147-52. PubMed ID: 7908851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexibility in the patterning and control of axial locomotor networks in lamprey.
    Buchanan JT
    Integr Comp Biol; 2011 Dec; 51(6):869-78. PubMed ID: 21743089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional regeneration of descending brainstem command pathways for locomotion demonstrated in the in vitro lamprey CNS.
    McClellan AD
    Brain Res; 1988 May; 448(2):339-45. PubMed ID: 3378155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Movements and muscle activity initiated by brain locomotor areas in semi-intact preparations from larval lamprey.
    Jackson AW; Pino FA; Wiebe ED; McClellan AD
    J Neurophysiol; 2007 May; 97(5):3229-41. PubMed ID: 17314244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spinal locomotor inputs to individually identified reticulospinal neurons in the lamprey.
    Buchanan JT
    J Neurophysiol; 2011 Nov; 106(5):2346-57. PubMed ID: 21832033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential effects of the reticulospinal system on locomotion in lamprey.
    Wannier T; Deliagina TG; Orlovsky GN; Grillner S
    J Neurophysiol; 1998 Jul; 80(1):103-12. PubMed ID: 9658032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Swimming rhythm generation in the caudal hindbrain of the lamprey.
    Buchanan JT
    J Neurophysiol; 2018 May; 119(5):1681-1692. PubMed ID: 29364070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Features of entrainment of spinal pattern generators for locomotor activity in the lamprey spinal cord.
    McClellan AD; Sigvardt KA
    J Neurosci; 1988 Jan; 8(1):133-45. PubMed ID: 2828561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.