These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 9242418)

  • 41. Establishment of a ventral cell fate in the spinal cord.
    Moghadam KS; Chen A; Heathcote RD
    Dev Dyn; 2003 Aug; 227(4):552-62. PubMed ID: 12889064
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The role of Mixer in patterning the early Xenopus embryo.
    Kofron M; Wylie C; Heasman J
    Development; 2004 May; 131(10):2431-41. PubMed ID: 15128672
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Analysis of Xwnt-4 in embryos of Xenopus laevis: a Wnt family member expressed in the brain and floor plate.
    McGrew LL; Otte AP; Moon RT
    Development; 1992 Jun; 115(2):463-73. PubMed ID: 1425335
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ventral mesodermal patterning in Xenopus embryos: expression patterns and activities of BMP-2 and BMP-4.
    Hemmati-Brivanlou A; Thomsen GH
    Dev Genet; 1995; 17(1):78-89. PubMed ID: 7554498
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Posteriorization by FGF, Wnt, and retinoic acid is required for neural crest induction.
    Villanueva S; Glavic A; Ruiz P; Mayor R
    Dev Biol; 2002 Jan; 241(2):289-301. PubMed ID: 11784112
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Spalt-like 4 promotes posterior neural fates via repression of pou5f3 family members in Xenopus.
    Young JJ; Kjolby RA; Kong NR; Monica SD; Harland RM
    Development; 2014 Apr; 141(8):1683-93. PubMed ID: 24715458
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nato3 plays an integral role in dorsoventral patterning of the spinal cord by segregating floor plate/p3 fates via Nkx2.2 suppression and Foxa2 maintenance.
    Mansour AA; Khazanov-Zisman S; Netser Y; Klar A; Ben-Arie N
    Development; 2014 Feb; 141(3):574-84. PubMed ID: 24401371
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization and early embryonic expression of a neural specific transcription factor xSOX3 in Xenopus laevis.
    Penzel R; Oschwald R; Chen Y; Tacke L; Grunz H
    Int J Dev Biol; 1997 Oct; 41(5):667-77. PubMed ID: 9415486
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Neuroectodermal specification and regionalization of the Spemann organizer in Xenopus.
    Fetka I; Doederlein G; Bouwmeester T
    Mech Dev; 2000 May; 93(1-2):49-58. PubMed ID: 10781939
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mesoderm induction in Xenopus laevis: a quantitative study using a cell lineage label and tissue-specific antibodies.
    Dale L; Smith JC; Slack JM
    J Embryol Exp Morphol; 1985 Oct; 89():289-312. PubMed ID: 3912458
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fox (forkhead) genes are involved in the dorso-ventral patterning of the Xenopus mesoderm.
    El-Hodiri H; Bhatia-Dey N; Kenyon K; Ault K; Dirksen M; Jamrich M
    Int J Dev Biol; 2001; 45(1):265-71. PubMed ID: 11291856
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Patterning the forebrain: FoxA4a/Pintallavis and Xvent2 determine the posterior limit of Xanf1 expression in the neural plate.
    Martynova N; Eroshkin F; Ermakova G; Bayramov A; Gray J; Grainger R; Zaraisky A
    Development; 2004 May; 131(10):2329-38. PubMed ID: 15128667
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Disruption of BMP signals in embryonic Xenopus ectoderm leads to direct neural induction.
    Hawley SH; Wünnenberg-Stapleton K; Hashimoto C; Laurent MN; Watabe T; Blumberg BW; Cho KW
    Genes Dev; 1995 Dec; 9(23):2923-35. PubMed ID: 7498789
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ras-mediated FGF signaling is required for the formation of posterior but not anterior neural tissue in Xenopus laevis.
    Ribisi S; Mariani FV; Aamar E; Lamb TM; Frank D; Harland RM
    Dev Biol; 2000 Nov; 227(1):183-96. PubMed ID: 11076686
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spatial and temporal transcription patterns of the forkhead related XFD-2/XFD-2' genes in Xenopus laevis embryos.
    Lef J; Clement JH; Oschwald R; Köster M; Knöchel W
    Mech Dev; 1994 Feb; 45(2):117-26. PubMed ID: 8199048
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Developmental expression of the Xenopus int-2 (FGF-3) gene: activation by mesodermal and neural induction.
    Tannahill D; Isaacs HV; Close MJ; Peters G; Slack JM
    Development; 1992 Jul; 115(3):695-702. PubMed ID: 1425349
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Developmental expression of Xenopus short-chain dehydrogenase/reductase 3.
    Kam RK; Chen Y; Chan SO; Chan WY; Dawid IB; Zhao H
    Int J Dev Biol; 2010; 54(8-9):1355-60. PubMed ID: 20563993
    [TBL] [Abstract][Full Text] [Related]  

  • 58. XMeis3 protein activity is required for proper hindbrain patterning in Xenopus laevis embryos.
    Dibner C; Elias S; Frank D
    Development; 2001 Sep; 128(18):3415-26. PubMed ID: 11566848
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Churchill, a zinc finger transcriptional activator, regulates the transition between gastrulation and neurulation.
    Sheng G; dos Reis M; Stern CD
    Cell; 2003 Nov; 115(5):603-13. PubMed ID: 14651851
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Xenopus Zic3, a primary regulator both in neural and neural crest development.
    Nakata K; Nagai T; Aruga J; Mikoshiba K
    Proc Natl Acad Sci U S A; 1997 Oct; 94(22):11980-5. PubMed ID: 9342348
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.