BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 9243168)

  • 1. A comparison of the effects of agonist and antagonist muscle fatigue on performance of rapid movements.
    Jarić S; Radovanović S; Milanović S; Ljubisavljević M; Anastasijević R
    Eur J Appl Physiol Occup Physiol; 1997; 76(1):41-7. PubMed ID: 9243168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in movement symmetry associated with strengthening and fatigue of agonist and antagonist muscles.
    Jaric S
    J Mot Behav; 2000 Mar; 32(1):9-15. PubMed ID: 11008267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in movement final position associated with agonist and antagonist muscle fatigue.
    Jaric S; Blesic S; Milanovic S; Radovanovic S; Ljubisavljevic M; Anastasijevic R
    Eur J Appl Physiol Occup Physiol; 1999 Oct; 80(5):467-71. PubMed ID: 10502081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatigue induced changes in phasic muscle activation patterns for fast elbow flexion movements.
    Corcos DM; Jiang HY; Wilding J; Gottlieb GL
    Exp Brain Res; 2002 Jan; 142(1):1-12. PubMed ID: 11797079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of agonist and antagonist muscle strength in performance of rapid movements.
    Jarić S; Ropret R; Kukolj M; Ilić DB
    Eur J Appl Physiol Occup Physiol; 1995; 71(5):464-8. PubMed ID: 8565980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in illusory ankle movements induced by tendon vibrations during the delayed recovery phase of stretch-shortening cycle fatigue: an indirect study of muscle spindle sensitivity modifications.
    Regueme SC; Barthèlemy J; Gauthier GM; Nicol C
    Brain Res; 2007 Dec; 1185():129-35. PubMed ID: 17959158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voluntary movement at the elbow in spastic hemiparesis.
    Fellows SJ; Kaus C; Thilmann AF
    Ann Neurol; 1994 Sep; 36(3):397-407. PubMed ID: 8080247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle fatigue changes cutaneous suppression of propriospinal drive to human upper limb muscles.
    Martin PG; Gandevia SC; Taylor JL
    J Physiol; 2007 Apr; 580(Pt 1):211-23. PubMed ID: 17218357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical manifestations of muscle fatigue during concentric and eccentric isokinetic knee flexion-extension movements.
    Molinari F; Knaflitz M; Bonato P; Actis MV
    IEEE Trans Biomed Eng; 2006 Jul; 53(7):1309-16. PubMed ID: 16830935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The postural control can be optimized by the first movement initiation condition encountered when submitted to muscle fatigue.
    Monjo F; Forestier N
    Hum Mov Sci; 2017 Aug; 54():1-12. PubMed ID: 28323218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coactivation of the elbow antagonist muscles is not affected by the speed of movement in isokinetic exercise.
    Bazzucchi I; Sbriccoli P; Marzattinocci G; Felici F
    Muscle Nerve; 2006 Feb; 33(2):191-9. PubMed ID: 16307438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatigue effects on tracking performance and muscle activity.
    Huysmans MA; Hoozemans MJ; van der Beek AJ; de Looze MP; van Dieën JH
    J Electromyogr Kinesiol; 2008 Jun; 18(3):410-9. PubMed ID: 17208457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in multi-joint kinematic patterns of repetitive hammering in healthy, fatigued and shoulder-injured individuals.
    Côté JN; Raymond D; Mathieu PA; Feldman AG; Levin MF
    Clin Biomech (Bristol, Avon); 2005 Jul; 20(6):581-90. PubMed ID: 15927734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Creep and fatigue development in the low back in static flexion.
    Shin G; D'Souza C; Liu YH
    Spine (Phila Pa 1976); 2009 Aug; 34(17):1873-8. PubMed ID: 19644340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of task difficulty on muscle activation patterns during rapid single-joint movements.
    Park S
    Percept Mot Skills; 2002 Jun; 94(3 Pt 2):1157-67. PubMed ID: 12186237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electromyographic changes of agonist and antagonist calf muscles during maximum isometric induced fatigue.
    Patikas D; Michailidis C; Bassa H; Kotzamanidis C; Tokmakidis S; Alexiou S; Koceja DM
    Int J Sports Med; 2002 May; 23(4):285-9. PubMed ID: 12015630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation among the elbow flexor muscles differs when maintaining arm position during a fatiguing contraction.
    Hunter SK; Lepers R; MacGillis CJ; Enoka RM
    J Appl Physiol (1985); 2003 Jun; 94(6):2439-47. PubMed ID: 12547844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatigue of elbow flexors during repeated flexion-extension cycles: effect of movement strategy.
    Guével A; Hogrel JY; Marini JF
    Int J Sports Med; 2000 Oct; 21(7):492-8. PubMed ID: 11071052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disturbed motor control of rhythmic movement at 2 h and delayed after maximal eccentric actions.
    Bottas R; Miettunen K; Komi PV; Linnamo V
    J Electromyogr Kinesiol; 2010 Aug; 20(4):608-18. PubMed ID: 20064728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle fatigue and fatigue-related biomechanical changes during a cyclic lifting task.
    Bonato P; Ebenbichler GR; Roy SH; Lehr S; Posch M; Kollmitzer J; Della Croce U
    Spine (Phila Pa 1976); 2003 Aug; 28(16):1810-20. PubMed ID: 12923468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.