These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 9243320)

  • 1. Structure and function of inositol 1,4,5-trisphosphate receptor.
    Yoshida Y; Imai S
    Jpn J Pharmacol; 1997 Jun; 74(2):125-37. PubMed ID: 9243320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular properties of inositol 1,4,5-trisphosphate receptors.
    Patel S; Joseph SK; Thomas AP
    Cell Calcium; 1999 Mar; 25(3):247-64. PubMed ID: 10378086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and function of IP3 receptors.
    Mikoshiba K; Furuichi T; Miyawaki A
    Semin Cell Biol; 1994 Aug; 5(4):273-81. PubMed ID: 7994011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IP3 receptor purified from liver plasma membrane is an (1,4,5)IP3 activated and (1,3,4,5)IP4 inhibited calcium permeable ion channel.
    Mayrleitner M; Schäfer R; Fleischer S
    Cell Calcium; 1995 Feb; 17(2):141-53. PubMed ID: 7736563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inositol 1,4,5-trisphosphate [correction of tris-phosphate] activation of inositol trisphosphate [correction of tris-phosphate] receptor Ca2+ channel by ligand tuning of Ca2+ inhibition.
    Mak DO; McBride S; Foskett JK
    Proc Natl Acad Sci U S A; 1998 Dec; 95(26):15821-5. PubMed ID: 9861054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The inositol triphosphate receptor family.
    Joseph SK
    Cell Signal; 1996 Jan; 8(1):1-7. PubMed ID: 8777135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of calcium oscillations and waves: a quantitative analysis.
    Sneyd J; Keizer J; Sanderson MJ
    FASEB J; 1995 Nov; 9(14):1463-72. PubMed ID: 7589988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium signalling: how do IP3 receptors work?
    Dawson AP
    Curr Biol; 1997 Sep; 7(9):R544-7. PubMed ID: 9285705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular magnesium and inositol 1,4,5-trisphosphate receptor: molecular mechanisms of interaction, physiology and pharmacology.
    Volpe P; Vezú L
    Magnes Res; 1993 Sep; 6(3):267-74. PubMed ID: 8292501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inositol 1,4,5-trisphosphate and calcium regulate the calcium channel function of the hepatic inositol 1,4,5-trisphosphate receptor.
    Dufour JF; Arias IM; Turner TJ
    J Biol Chem; 1997 Jan; 272(5):2675-81. PubMed ID: 9006903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inositol trisphosphate receptor mediated spatiotemporal calcium signalling.
    Miyazaki S
    Curr Opin Cell Biol; 1995 Apr; 7(2):190-6. PubMed ID: 7612270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IP3 receptors and their regulation by calmodulin and cytosolic Ca2+.
    Taylor CW; Laude AJ
    Cell Calcium; 2002; 32(5-6):321-34. PubMed ID: 12543092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytosolic inositol 1,4,5-trisphosphate dynamics during intracellular calcium oscillations in living cells.
    Matsu-ura T; Michikawa T; Inoue T; Miyawaki A; Yoshida M; Mikoshiba K
    J Cell Biol; 2006 Jun; 173(5):755-65. PubMed ID: 16754959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adenophostin-medicated quantal Ca2+ release in the purified and reconstituted inositol 1,4,5-trisphosphate receptor type 1.
    Hirota J; Michikawa T; Miyawaki A; Takahashi M; Tanzawa K; Okura I; Furuichi T; Mikoshiba K
    FEBS Lett; 1995 Jul; 368(2):248-52. PubMed ID: 7628615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The pharmacology of intracellular Ca(2+)-release channels.
    Ehrlich BE; Kaftan E; Bezprozvannaya S; Bezprozvanny I
    Trends Pharmacol Sci; 1994 May; 15(5):145-9. PubMed ID: 7754532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thimerosal stimulates Ca2+ flux through inositol 1,4,5-trisphosphate receptor type 1, but not type 3, via modulation of an isoform-specific Ca2+-dependent intramolecular interaction.
    Bultynck G; Szlufcik K; Kasri NN; Assefa Z; Callewaert G; Missiaen L; Parys JB; De Smedt H
    Biochem J; 2004 Jul; 381(Pt 1):87-96. PubMed ID: 15015936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel role for calmodulin: Ca2+-independent inhibition of type-1 inositol trisphosphate receptors.
    Cardy TJ; Taylor CW
    Biochem J; 1998 Sep; 334 ( Pt 2)(Pt 2):447-55. PubMed ID: 9716504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantal Ca2+ release and inactivation in a model of the inositol 1,4,5-trisphosphate receptor involving transformation of the ligand by the receptor.
    Kaimachnikov NP; Nazarenko VG
    Biosci Rep; 1996 Oct; 16(5):405-13. PubMed ID: 8913530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The type II inositol 1,4,5-trisphosphate receptor can trigger Ca2+ waves in rat hepatocytes.
    Hirata K; Pusl T; O'Neill AF; Dranoff JA; Nathanson MH
    Gastroenterology; 2002 Apr; 122(4):1088-100. PubMed ID: 11910359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New developments in the molecular pharmacology of the myo-inositol 1,4,5-trisphosphate receptor.
    Wilcox RA; Primrose WU; Nahorski SR; Challiss RA
    Trends Pharmacol Sci; 1998 Nov; 19(11):467-75. PubMed ID: 9850611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.