BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 9243612)

  • 21. Calcium-independent release of acetylcholine from electric organ synaptosomes and its changes by depolarization and cholinergic drugs.
    Dolezal V; Diebler MF; Lazereg S; Israël M; Tucek S
    J Neurochem; 1988 Feb; 50(2):406-13. PubMed ID: 2447238
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pharmacological characterization of nerve growth factor and/or monosialoganglioside GM1 effects on cholinergic markers in the adult lesioned brain.
    Garofalo L; Cuello AC
    J Pharmacol Exp Ther; 1995 Feb; 272(2):527-45. PubMed ID: 7853166
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ganglioside-dependent factor, inhibiting lipid peroxidation in rat brain synaptosomes.
    Tyurin VA; Tyurina YYu ; Avrova NF
    Neurochem Int; 1992 Apr; 20(3):401-7. PubMed ID: 1304335
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The use of antioxidants to prevent glutamate-induced derangement of calcium ion metabolism in rat cerebral cortex synaptosomes.
    Avrova NF; Shestak KI; Zakharova IO; Sokolova TV; Tyurina YY; Tyurin VA
    Neurosci Behav Physiol; 2000; 30(5):535-41. PubMed ID: 11037144
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Storage and release of acetylcholine in rat cortical synaptosomes: effects of D,L-2-(4-phenylpiperidino)cyclohexanol (AH5183).
    Suszkiw JB; Toth G
    Brain Res; 1986 Oct; 386(1-2):371-8. PubMed ID: 3022885
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Calcium uptake of rat brain synaptosomes as a function of membrane potential under different depolarizing conditions.
    Adam-Vizi V; Ligeti E
    J Physiol; 1986 Mar; 372():363-77. PubMed ID: 3723411
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Altered acetylcholine release in the hippocampus of dystrophin-deficient mice.
    Parames SF; Coletta-Yudice ED; Nogueira FM; Nering de Sousa MB; Hayashi MA; Lima-Landman MT; Lapa AJ; Souccar C
    Neuroscience; 2014 Jun; 269():173-83. PubMed ID: 24704431
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simultaneous release of acetylcholine and ATP from stimulated cholinergic synaptosomes.
    Morel N; Meunier FM
    J Neurochem; 1981 May; 36(5):1766-73. PubMed ID: 7241136
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reduced Ca2+ flux in synaptosomes from cats with GM1 gangliosidosis.
    Koenig ML; Jope RS; Baker HJ; Lally KM
    Brain Res; 1987 Oct; 424(1):169-76. PubMed ID: 3121133
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of lactate on acetylcholine release evoked by various stimuli from Torpedo synaptosomes.
    Gaudry-Talarmain YM
    Eur J Pharmacol; 1986 Oct; 129(3):235-43. PubMed ID: 2430814
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of MR16728, a cetiedil analogue, on acetylcholine release in Torpedo synaptosomes.
    Moulian N; Gaudry-Talarmain YM; Israël M
    Eur J Pharmacol; 1993 Feb; 231(3):407-13. PubMed ID: 8449232
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Opiates inhibit acetylcholine release from Torpedo nerve terminals by blocking Ca2+ influx.
    Michaelson DM; McDowall G; Sarne Y
    J Neurochem; 1984 Sep; 43(3):614-8. PubMed ID: 6431053
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The use of gadolinium to investigate the relationship between Ca2+ influx and glutamate release in rat cerebrocortical synaptosomes.
    Romano-Silva MA; Gomez MV; Brammer MJ
    Neurosci Lett; 1994 Aug; 178(1):155-8. PubMed ID: 7816327
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phorbol esters induce neurotransmitter release in cholinergic synaptosomes from Torpedo electric organ.
    Guitart X; Marsal J; Solsona C
    J Neurochem; 1990 Aug; 55(2):468-72. PubMed ID: 2370549
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Relation of acetylcholine release to Ca2+ uptake and intraterminal Ca2+ concentration in guinea-pig cortex synaptosomes.
    Adam-Vizi V; Ashley RH
    J Neurochem; 1987 Oct; 49(4):1013-21. PubMed ID: 3625199
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ca2(+)-evoked [3H]dopamine release from synaptosomes is dependent on neuronal type Ca2+ channels and is not mediated by acetylcholine, glutamate or aspartate release.
    Bowyer JF; Weiner N
    J Pharmacol Exp Ther; 1990 Aug; 254(2):664-70. PubMed ID: 1974645
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transient release of acetylcholine from Torpedo synaptosomes in response to prolonged depolarization.
    Meunier FM; Birman S
    J Physiol (Paris); 1986; 81(4):306-11. PubMed ID: 3572824
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sulfatide and GM1 ganglioside modulate the high-affinity dopamine uptake in rat striatal synaptosomes: evidence for the involvement of their ionic charges.
    Barrier L; Page G; Barc S; Piriou A; Portoukalian J
    Neurochem Int; 2003 Mar; 42(4):305-13. PubMed ID: 12470704
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Presynaptic effect of 7-OH-DPAT on evoked [3H]-acetylcholine release in rat striatal synaptosomes.
    Sanz AG; Hospital S; Badia A; Clos MV
    Brain Res; 2000 Aug; 874(2):116-22. PubMed ID: 10960595
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ca(2+)-dependent changes of acetylcholine release and IP3 mass in Torpedo cholinergic synaptosomes.
    Carrasco MA; Gaudry-Talarmain YM; Molgo J
    Neurochem Int; 1997 Mar; 30(3):321-7. PubMed ID: 9041564
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.