These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 9243612)

  • 21. Calcium-independent release of acetylcholine from electric organ synaptosomes and its changes by depolarization and cholinergic drugs.
    Dolezal V; Diebler MF; Lazereg S; Israël M; Tucek S
    J Neurochem; 1988 Feb; 50(2):406-13. PubMed ID: 2447238
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pharmacological characterization of nerve growth factor and/or monosialoganglioside GM1 effects on cholinergic markers in the adult lesioned brain.
    Garofalo L; Cuello AC
    J Pharmacol Exp Ther; 1995 Feb; 272(2):527-45. PubMed ID: 7853166
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ganglioside-dependent factor, inhibiting lipid peroxidation in rat brain synaptosomes.
    Tyurin VA; Tyurina YYu ; Avrova NF
    Neurochem Int; 1992 Apr; 20(3):401-7. PubMed ID: 1304335
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The use of antioxidants to prevent glutamate-induced derangement of calcium ion metabolism in rat cerebral cortex synaptosomes.
    Avrova NF; Shestak KI; Zakharova IO; Sokolova TV; Tyurina YY; Tyurin VA
    Neurosci Behav Physiol; 2000; 30(5):535-41. PubMed ID: 11037144
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Storage and release of acetylcholine in rat cortical synaptosomes: effects of D,L-2-(4-phenylpiperidino)cyclohexanol (AH5183).
    Suszkiw JB; Toth G
    Brain Res; 1986 Oct; 386(1-2):371-8. PubMed ID: 3022885
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Calcium uptake of rat brain synaptosomes as a function of membrane potential under different depolarizing conditions.
    Adam-Vizi V; Ligeti E
    J Physiol; 1986 Mar; 372():363-77. PubMed ID: 3723411
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Altered acetylcholine release in the hippocampus of dystrophin-deficient mice.
    Parames SF; Coletta-Yudice ED; Nogueira FM; Nering de Sousa MB; Hayashi MA; Lima-Landman MT; Lapa AJ; Souccar C
    Neuroscience; 2014 Jun; 269():173-83. PubMed ID: 24704431
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simultaneous release of acetylcholine and ATP from stimulated cholinergic synaptosomes.
    Morel N; Meunier FM
    J Neurochem; 1981 May; 36(5):1766-73. PubMed ID: 7241136
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reduced Ca2+ flux in synaptosomes from cats with GM1 gangliosidosis.
    Koenig ML; Jope RS; Baker HJ; Lally KM
    Brain Res; 1987 Oct; 424(1):169-76. PubMed ID: 3121133
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of lactate on acetylcholine release evoked by various stimuli from Torpedo synaptosomes.
    Gaudry-Talarmain YM
    Eur J Pharmacol; 1986 Oct; 129(3):235-43. PubMed ID: 2430814
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of MR16728, a cetiedil analogue, on acetylcholine release in Torpedo synaptosomes.
    Moulian N; Gaudry-Talarmain YM; Israël M
    Eur J Pharmacol; 1993 Feb; 231(3):407-13. PubMed ID: 8449232
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Opiates inhibit acetylcholine release from Torpedo nerve terminals by blocking Ca2+ influx.
    Michaelson DM; McDowall G; Sarne Y
    J Neurochem; 1984 Sep; 43(3):614-8. PubMed ID: 6431053
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The use of gadolinium to investigate the relationship between Ca2+ influx and glutamate release in rat cerebrocortical synaptosomes.
    Romano-Silva MA; Gomez MV; Brammer MJ
    Neurosci Lett; 1994 Aug; 178(1):155-8. PubMed ID: 7816327
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phorbol esters induce neurotransmitter release in cholinergic synaptosomes from Torpedo electric organ.
    Guitart X; Marsal J; Solsona C
    J Neurochem; 1990 Aug; 55(2):468-72. PubMed ID: 2370549
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Relation of acetylcholine release to Ca2+ uptake and intraterminal Ca2+ concentration in guinea-pig cortex synaptosomes.
    Adam-Vizi V; Ashley RH
    J Neurochem; 1987 Oct; 49(4):1013-21. PubMed ID: 3625199
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ca2(+)-evoked [3H]dopamine release from synaptosomes is dependent on neuronal type Ca2+ channels and is not mediated by acetylcholine, glutamate or aspartate release.
    Bowyer JF; Weiner N
    J Pharmacol Exp Ther; 1990 Aug; 254(2):664-70. PubMed ID: 1974645
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transient release of acetylcholine from Torpedo synaptosomes in response to prolonged depolarization.
    Meunier FM; Birman S
    J Physiol (Paris); 1986; 81(4):306-11. PubMed ID: 3572824
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sulfatide and GM1 ganglioside modulate the high-affinity dopamine uptake in rat striatal synaptosomes: evidence for the involvement of their ionic charges.
    Barrier L; Page G; Barc S; Piriou A; Portoukalian J
    Neurochem Int; 2003 Mar; 42(4):305-13. PubMed ID: 12470704
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Presynaptic effect of 7-OH-DPAT on evoked [3H]-acetylcholine release in rat striatal synaptosomes.
    Sanz AG; Hospital S; Badia A; Clos MV
    Brain Res; 2000 Aug; 874(2):116-22. PubMed ID: 10960595
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ca(2+)-dependent changes of acetylcholine release and IP3 mass in Torpedo cholinergic synaptosomes.
    Carrasco MA; Gaudry-Talarmain YM; Molgo J
    Neurochem Int; 1997 Mar; 30(3):321-7. PubMed ID: 9041564
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.