BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 9244234)

  • 21. Increased NADH-oxidase-mediated superoxide production in the early stages of atherosclerosis: evidence for involvement of the renin-angiotensin system.
    Warnholtz A; Nickenig G; Schulz E; Macharzina R; Bräsen JH; Skatchkov M; Heitzer T; Stasch JP; Griendling KK; Harrison DG; Böhm M; Meinertz T; Münzel T
    Circulation; 1999 Apr; 99(15):2027-33. PubMed ID: 10209008
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NADH oxidase activity of human xanthine oxidoreductase--generation of superoxide anion.
    Sanders SA; Eisenthal R; Harrison R
    Eur J Biochem; 1997 May; 245(3):541-8. PubMed ID: 9182988
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Increased NAD(P)H oxidase-mediated superoxide production in renovascular hypertension: evidence for an involvement of protein kinase C.
    Heitzer T; Wenzel U; Hink U; Krollner D; Skatchkov M; Stahl RA; MacHarzina R; Bräsen JH; Meinertz T; Münzel T
    Kidney Int; 1999 Jan; 55(1):252-60. PubMed ID: 9893134
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detection of mitochondria-derived reactive oxygen species production by the chemilumigenic probes lucigenin and luminol.
    Li Y; Zhu H; Trush MA
    Biochim Biophys Acta; 1999 Jun; 1428(1):1-12. PubMed ID: 10366754
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Validation of lucigenin (bis-N-methylacridinium) as a chemilumigenic probe for detecting superoxide anion radical production by enzymatic and cellular systems.
    Li Y; Zhu H; Kuppusamy P; Roubaud V; Zweier JL; Trush MA
    J Biol Chem; 1998 Jan; 273(4):2015-23. PubMed ID: 9442038
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Roles for NAD(P)H oxidases and reactive oxygen species in vascular oxygen sensing mechanisms.
    Wolin MS; Burke-Wolin TM; Mohazzab-H KM
    Respir Physiol; 1999 Apr; 115(2):229-38. PubMed ID: 10385036
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detergent-amplified chemiluminescence of lucigenin for determination of superoxide anion production by NADPH oxidase and xanthine oxidase.
    Storch J; Ferber E
    Anal Biochem; 1988 Mar; 169(2):262-7. PubMed ID: 2837920
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Redox-regulated signaling by lactosylceramide in the proliferation of human aortic smooth muscle cells.
    Bhunia AK; Han H; Snowden A; Chatterjee S
    J Biol Chem; 1997 Jun; 272(25):15642-9. PubMed ID: 9188453
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence for a NADH/NADPH oxidase in human umbilical vein endothelial cells using electron spin resonance.
    Somers MJ; Burchfield JS; Harrison DG
    Antioxid Redox Signal; 2000; 2(4):779-87. PubMed ID: 11213482
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrogen peroxide formation and iron ion oxidoreduction linked to NADH oxidation in radish plasmalemma vesicles.
    Vianello A; Zancani M; Macrí F
    Biochim Biophys Acta; 1990 Mar; 1023(1):19-24. PubMed ID: 2156562
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Diphenyleneiodonium, an NAD(P)H oxidase inhibitor, also potently inhibits mitochondrial reactive oxygen species production.
    Li Y; Trush MA
    Biochem Biophys Res Commun; 1998 Dec; 253(2):295-9. PubMed ID: 9878531
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lactate up-regulates the expression of lactate oxidation complex-related genes in left ventricular cardiac tissue of rats.
    Gabriel-Costa D; da Cunha TF; Bechara LR; Fortunato RS; Bozi LH; Coelho Mde A; Barreto-Chaves ML; Brum PC
    PLoS One; 2015; 10(5):e0127843. PubMed ID: 25996919
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Involvement of NADH/NADPH oxidase in human platelet ROS production.
    Seno T; Inoue N; Gao D; Okuda M; Sumi Y; Matsui K; Yamada S; Hirata KI; Kawashima S; Tawa R; Imajoh-Ohmi S; Sakurai H; Yokoyama M
    Thromb Res; 2001 Sep; 103(5):399-409. PubMed ID: 11553372
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sulfite stimulates NADPH oxidase of human neutrophils to produce active oxygen radicals via protein kinase C and Ca2+/calmodulin pathways.
    Beck-Speier I; Liese JG; Belohradsky BH; Godleski JJ
    Free Radic Biol Med; 1993 Jun; 14(6):661-8. PubMed ID: 8392022
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High pressure induces superoxide production in isolated arteries via protein kinase C-dependent activation of NAD(P)H oxidase.
    Ungvari Z; Csiszar A; Huang A; Kaminski PM; Wolin MS; Koller A
    Circulation; 2003 Sep; 108(10):1253-8. PubMed ID: 12874194
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of reactive oxygen species generating systems in rat epididymal spermatozoa.
    Vernet P; Fulton N; Wallace C; Aitken RJ
    Biol Reprod; 2001 Oct; 65(4):1102-13. PubMed ID: 11566731
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Superoxide production in the vasculature of lipopolysaccharide-treated rats and pigs.
    Javeshghani D; Hussain SN; Scheidel J; Quinn MT; Magder SA
    Shock; 2003 May; 19(5):486-93. PubMed ID: 12744495
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Activation of an H2O2-generating NADH oxidase in human lung fibroblasts by transforming growth factor beta 1.
    Thannickal VJ; Fanburg BL
    J Biol Chem; 1995 Dec; 270(51):30334-8. PubMed ID: 8530457
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Increased NAD(P)H oxidase and reactive oxygen species in coronary arteries after balloon injury.
    Shi Y; Niculescu R; Wang D; Patel S; Davenpeck KL; Zalewski A
    Arterioscler Thromb Vasc Biol; 2001 May; 21(5):739-45. PubMed ID: 11348868
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Superoxide production and expression of NAD(P)H oxidases by transformed and primary human colonic epithelial cells.
    Perner A; Andresen L; Pedersen G; Rask-Madsen J
    Gut; 2003 Feb; 52(2):231-6. PubMed ID: 12524405
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.