These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 9245364)

  • 61. Complications of nonlinear echo time spacing for measurement of T (2).
    Does MD; Gore JC
    NMR Biomed; 2000 Jan; 13(1):1-7. PubMed ID: 10668048
    [TBL] [Abstract][Full Text] [Related]  

  • 62. On the lorentzian versus Gaussian character of time-domain spin-echo signals from the brain as sampled by means of gradient-echoes: Implications for quantitative transverse relaxation studies.
    Mulkern RV; Balasubramanian M; Mitsouras D
    Magn Reson Med; 2015 Jul; 74(1):51-62. PubMed ID: 25078089
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A three-component model for magnetization transfer. Solution by projection-operator technique, and application to cartilage.
    Adler RS; Swanson SD; Yeung HN
    J Magn Reson B; 1996 Jan; 110(1):1-8. PubMed ID: 8556231
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Effect of water fraction in selection of optimal TI value for STIR sequences.
    Sugimoto H; Sakai O; Shinozaki T; Ohsawa T; Kimura T
    J Comput Assist Tomogr; 1994; 18(1):119-25. PubMed ID: 8282859
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Molecular basis of magnetic relaxation of water protons of tissue.
    Koenig SH
    Acad Radiol; 1996 Jul; 3(7):597-606. PubMed ID: 8796722
    [No Abstract]   [Full Text] [Related]  

  • 66. T1-weighting of Hahn echo-trains in the stray-field for deuterium: prospects for imaging using long echo-train summation.
    Randall EW; Nunes TG; Guillot G; Bodart PR
    Solid State Nucl Magn Reson; 1999 Sep; 14(3-4):165-72. PubMed ID: 10499662
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Hahn-echoes from 14N in solids by the stray-field method: prospects for imaging using Long Echo-Train Summation.
    Randall EW; Samoilenko AA; Fu R
    Solid State Nucl Magn Reson; 1999 Sep; 14(3-4):173-9. PubMed ID: 10499663
    [TBL] [Abstract][Full Text] [Related]  

  • 68. New technique for single-scan T(1) measurements using solid echoes.
    Burum DP; Elleman DD; Rhim WK
    Rev Sci Instrum; 1978 Aug; 49(8):1169. PubMed ID: 18699275
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Liver acquisition with volume acceleration flex on 70-cm wide-bore and 60-cm conventional-bore 3.0-T MRI.
    Saito S; Tanaka K; Hashido T
    Radiol Phys Technol; 2016 Jul; 9(2):154-60. PubMed ID: 26739299
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Renal oxygenation changes during water loading as evaluated by BOLD MRI: effect of NOS inhibition.
    Haque M; Franklin T; Prasad P
    J Magn Reson Imaging; 2011 Apr; 33(4):898-901. PubMed ID: 21448955
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Chemical shift-based water/fat separation: a comparison of signal models.
    Hernando D; Liang ZP; Kellman P
    Magn Reson Med; 2010 Sep; 64(3):811-22. PubMed ID: 20593375
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Multiecho water-fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling.
    Yu H; Shimakawa A; McKenzie CA; Brodsky E; Brittain JH; Reeder SB
    Magn Reson Med; 2008 Nov; 60(5):1122-34. PubMed ID: 18956464
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Subchondral bone and cartilage thickness from MRI: effects of chemical-shift artifact.
    McGibbon CA; Bencardino J; Palmer WE
    MAGMA; 2003 Feb; 16(1):1-9. PubMed ID: 12695880
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Measurement of R'2 in the presence of multiple spectral components using reference spectrum deconvolution.
    Wehrli FW; Ma J; Hopkins JA; Song HK
    J Magn Reson; 1998 Mar; 131(1):61-8. PubMed ID: 9533907
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Method for image-based measurement of the reversible and irreversible contribution to the transverse-relaxation rate.
    Ma J; Wehrli FW
    J Magn Reson B; 1996 Apr; 111(1):61-9. PubMed ID: 8620286
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Interleaved water and fat imaging and applications to lipid quantitation using the gradient reversal technique.
    Tang H; Wu EX; Kennan R; Liu H; Williams DS
    J Magn Reson Imaging; 2007 Oct; 26(4):1064-70. PubMed ID: 17896353
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Dixon techniques for water and fat imaging.
    Ma J
    J Magn Reson Imaging; 2008 Sep; 28(3):543-58. PubMed ID: 18777528
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Non-invasive MR thermography using the water proton chemical shift.
    Kuroda K
    Int J Hyperthermia; 2005 Sep; 21(6):547-60. PubMed ID: 16147439
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A single-scan imaging technique for measurement of the relative concentrations of fat and water protons and their transverse relaxation times.
    Ma J; Wehrli FW; Song HK; Hwang SN
    J Magn Reson; 1997 Mar; 125(1):92-101. PubMed ID: 9245364
    [TBL] [Abstract][Full Text] [Related]  

  • 80.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.