BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

492 related articles for article (PubMed ID: 9245417)

  • 1. EXAFS comparison of the dimanganese core structures of manganese catalase, arginase, and manganese-substituted ribonucleotide reductase and hemerythrin.
    Stemmler TL; Sossong TM; Goldstein JI; Ash DE; Elgren TE; Kurtz DM; Penner-Hahn JE
    Biochemistry; 1997 Aug; 36(32):9847-58. PubMed ID: 9245417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of the metal ion separation and energies of the three lowest electronic states of dimanganese (II,II) complexes and enzymes: catalase and liver arginase.
    Khangulov SV; Pessiki PJ; Barynin VV; Ash DE; Dismukes GC
    Biochemistry; 1995 Feb; 34(6):2015-25. PubMed ID: 7849059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural diversity in manganese, iron and cobalt complexes of the ditopic 1,2-bis(2,2'-bipyridyl-6-yl)ethyne ligand and observation of epoxidation and catalase activity of manganese compounds.
    Madhu V; Ekambaram B; Shimon LJ; Diskin Y; Leitus G; Neumann R
    Dalton Trans; 2010 Aug; 39(31):7266-75. PubMed ID: 20582360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural analysis of the Mn(IV)/Fe(III) cofactor of Chlamydia trachomatis ribonucleotide reductase by extended X-ray absorption fine structure spectroscopy and density functional theory calculations.
    Younker JM; Krest CM; Jiang W; Krebs C; Bollinger JM; Green MT
    J Am Chem Soc; 2008 Nov; 130(45):15022-7. PubMed ID: 18937466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chloride ligation in inorganic manganese model compounds relevant to photosystem II studied using X-ray absorption spectroscopy.
    Pizarro SA; Visser H; Cinco RM; Robblee JH; Pal S; Mukhopadhyay S; Mok HJ; Sauer K; Wieghardt K; Armstrong WH; Yachandra VK
    J Biol Inorg Chem; 2004 Apr; 9(3):247-55. PubMed ID: 14758524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox intermediates of the Mn-Fe Site in subunit R2 of Chlamydia trachomatis ribonucleotide reductase: an X-ray absorption and EPR study.
    Voevodskaya N; Lendzian F; Sanganas O; Grundmeier A; Gräslund A; Haumann M
    J Biol Chem; 2009 Feb; 284(7):4555-66. PubMed ID: 19095645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of hydrogen peroxide dismutation by a dimanganese catalase mimic: dominant role of an intramolecular base on substrate binding affinity and rate acceleration.
    Boelrijk AE; Dismukes GC
    Inorg Chem; 2000 Jul; 39(14):3020-8. PubMed ID: 11196896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geometrical properties of the manganese(iv)/iron(iii) cofactor of Chlamydia trachomatis ribonucleotide reductase unveiled by simulations of XAS spectra.
    Sproviero EM
    Dalton Trans; 2017 Apr; 46(14):4724-4736. PubMed ID: 28332661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for a Di-μ-oxo Diamond Core in the Mn(IV)/Fe(IV) Activation Intermediate of Ribonucleotide Reductase from Chlamydia trachomatis.
    Martinie RJ; Blaesi EJ; Krebs C; Bollinger JM; Silakov A; Pollock CJ
    J Am Chem Soc; 2017 Feb; 139(5):1950-1957. PubMed ID: 28075562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis, characterization, and physicochemical properties of manganese(III) and manganese(V)-oxo corrolazines.
    Lansky DE; Mandimutsira B; Ramdhanie B; Clausén M; Penner-Hahn J; Zvyagin SA; Telser J; Krzystek J; Zhan R; Ou Z; Kadish KM; Zakharov L; Rheingold AL; Goldberg DP
    Inorg Chem; 2005 Jun; 44(13):4485-98. PubMed ID: 15962955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mimicking Class I b Mn
    Magherusan AM; Zhou A; Farquhar ER; García-Melchor M; Twamley B; Que L; McDonald AR
    Angew Chem Int Ed Engl; 2018 Jan; 57(4):918-922. PubMed ID: 29165865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural characterization of Zn(II)-, Co(II)-, and Mn(II)-loaded forms of the argE-encoded N-acetyl-L-ornithine deacetylase from Escherichia coli.
    Tao Y; Shokes JE; McGregor WC; Scott RA; Holz RC
    J Inorg Biochem; 2012 Jun; 111():157-63. PubMed ID: 22459917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dimanganese(III,IV) oxidation state of catalase from Thermus thermophilus: electron nuclear double resonance analysis of water and protein ligands in the active site.
    Khangulov S; Sivaraja M; Barynin VV; Dismukes GC
    Biochemistry; 1993 May; 32(18):4912-24. PubMed ID: 8387822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic implications for the formation of the diiron cluster in ribonucleotide reductase provided by quantitative EPR spectroscopy.
    Pierce BS; Elgren TE; Hendrich MP
    J Am Chem Soc; 2003 Jul; 125(29):8748-59. PubMed ID: 12862469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. L-arginine binding to liver arginase requires proton transfer to gateway residue His141 and coordination of the guanidinium group to the dimanganese(II,II) center.
    Khangulov SV; Sossong TM; Ash DE; Dismukes GC
    Biochemistry; 1998 Jun; 37(23):8539-50. PubMed ID: 9622506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "Bridging hydroxide effect" on mu-carboxylato coordination and electrochemical potentials of bimetallic centers: Mn2(II,II) and Mn2(III,III) complexes as functional models of dimanganese catalases.
    Boelrijk AE; Khangulov SV; Dismukes GC
    Inorg Chem; 2000 Jul; 39(14):3009-19. PubMed ID: 11196895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxoiron(IV) complexes as synthons for the assembly of heterobimetallic centers such as the Fe/Mn active site of Class Ic ribonucleotide reductases.
    Zhou A; Crossland PM; Draksharapu A; Jasniewski AJ; Kleespies ST; Que L
    J Biol Inorg Chem; 2018 Jan; 23(1):155-165. PubMed ID: 29218640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical flexibility of heterobimetallic Mn/Fe cofactors: R2lox and R2c proteins.
    Kutin Y; Kositzki R; Branca RMM; Srinivas V; Lundin D; Haumann M; Högbom M; Cox N; Griese JJ
    J Biol Chem; 2019 Nov; 294(48):18372-18386. PubMed ID: 31591267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local and global effects of metal binding within the small subunit of ribonucleotide reductase.
    Pierce BS; Hendrich MP
    J Am Chem Soc; 2005 Mar; 127(10):3613-23. PubMed ID: 15755183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization of Mn
    Doyle LM; Bienenmann RLM; Gericke R; Xu S; Farquhar ER; Que L; McDonald AR
    J Inorg Biochem; 2024 Aug; 257():112583. PubMed ID: 38733704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.