BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 9245502)

  • 1. Subunit interactions in the assembly of neuronal Kir3.0 inwardly rectifying K+ channels.
    Wischmeyer E; Döring F; Wischmeyer E; Spauschus A; Thomzig A; Veh R; Karschin A
    Mol Cell Neurosci; 1997; 9(3):194-206. PubMed ID: 9245502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heteromeric assembly of inward rectifier channel subunit Kir2.1 with Kir3.1 and with Kir3.4.
    Ishihara K; Yamamoto T; Kubo Y
    Biochem Biophys Res Commun; 2009 Mar; 380(4):832-7. PubMed ID: 19338762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pertussis-toxin-sensitive Galpha subunits selectively bind to C-terminal domain of neuronal GIRK channels: evidence for a heterotrimeric G-protein-channel complex.
    Clancy SM; Fowler CE; Finley M; Suen KF; Arrabit C; Berton F; Kosaza T; Casey PJ; Slesinger PA
    Mol Cell Neurosci; 2005 Feb; 28(2):375-89. PubMed ID: 15691717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bombesin receptors inhibit G protein-coupled inwardly rectifying K+ channels expressed in Xenopus oocytes through a protein kinase C-dependent pathway.
    Stevens EB; Shah BS; Pinnock RD; Lee K
    Mol Pharmacol; 1999 Jun; 55(6):1020-7. PubMed ID: 10347243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ontogeny of gene expression of Kir channel subunits in the rat.
    Karschin C; Karschin A
    Mol Cell Neurosci; 1997; 10(3-4):131-48. PubMed ID: 9532576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of extracellular cations on the inward rectifying K+ channels Kir2.1 and Kir3.1/Kir3.4.
    Owen JM; Quinn CC; Leach R; Findlay JB; Boyett MR
    Exp Physiol; 1999 May; 84(3):471-88. PubMed ID: 10362846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-expression of human Kir3 subunits can yield channels with different functional properties.
    Schoots O; Wilson JM; Ethier N; Bigras E; Hebert TE; Van Tol HH
    Cell Signal; 1999 Dec; 11(12):871-83. PubMed ID: 10659995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytoplasmic domain structures of Kir2.1 and Kir3.1 show sites for modulating gating and rectification.
    Pegan S; Arrabit C; Zhou W; Kwiatkowski W; Collins A; Slesinger PA; Choe S
    Nat Neurosci; 2005 Mar; 8(3):279-87. PubMed ID: 15723059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of inwardly rectifying K+ channels by distinct PtdIns(4,5)P2 interactions.
    Zhang H; He C; Yan X; Mirshahi T; Logothetis DE
    Nat Cell Biol; 1999 Jul; 1(3):183-8. PubMed ID: 10559906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of G protein beta subunit with inward rectifier K(+) channel Kir3.
    Zhao Q; Kawano T; Nakata H; Nakajima Y; Nakajima S; Kozasa T
    Mol Pharmacol; 2003 Nov; 64(5):1085-91. PubMed ID: 14573757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizations of a loss-of-function mutation in the Kir3.4 channel subunit.
    Calloe K; Ravn LS; Schmitt N; Sui JL; Duno M; Haunso S; Grunnet M; Svendsen JH; Olesen SP
    Biochem Biophys Res Commun; 2007 Dec; 364(4):889-95. PubMed ID: 17967416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism underlying bupivacaine inhibition of G protein-gated inwardly rectifying K+ channels.
    Zhou W; Arrabit C; Choe S; Slesinger PA
    Proc Natl Acad Sci U S A; 2001 May; 98(11):6482-7. PubMed ID: 11353868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subunit positional effects revealed by novel heteromeric inwardly rectifying K+ channels.
    Pessia M; Tucker SJ; Lee K; Bond CT; Adelman JP
    EMBO J; 1996 Jun; 15(12):2980-7. PubMed ID: 8670799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GABA(B)-receptor subtypes assemble into functional heteromeric complexes.
    Kaupmann K; Malitschek B; Schuler V; Heid J; Froestl W; Beck P; Mosbacher J; Bischoff S; Kulik A; Shigemoto R; Karschin A; Bettler B
    Nature; 1998 Dec; 396(6712):683-7. PubMed ID: 9872317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of Kir3.1, Kir3.2A and Kir3.2C subunits to native G protein-gated inwardly rectifying potassium currents in cultured hippocampal neurons.
    Leaney JL
    Eur J Neurosci; 2003 Oct; 18(8):2110-8. PubMed ID: 14622172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graded contribution of the Gbeta gamma binding domains to GIRK channel activation.
    Sadja R; Alagem N; Reuveny E
    Proc Natl Acad Sci U S A; 2002 Aug; 99(16):10783-8. PubMed ID: 12124401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of regions that regulate the expression and activity of G protein-gated inward rectifier K+ channels in Xenopus oocytes.
    Stevens EB; Woodward R; Ho IH; Murrell-Lagnado R
    J Physiol; 1997 Sep; 503 ( Pt 3)(Pt 3):547-62. PubMed ID: 9379410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic organization and promoter analysis of the human G-protein-coupled K+ channel Kir3.1 (KCNJ3/HGIRK1).
    Schoots O; Voskoglou T; Van Tol HH
    Genomics; 1997 Feb; 39(3):279-88. PubMed ID: 9119365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. betaL-betaM loop in the C-terminal domain of G protein-activated inwardly rectifying K(+) channels is important for G(betagamma) subunit activation.
    Finley M; Arrabit C; Fowler C; Suen KF; Slesinger PA
    J Physiol; 2004 Mar; 555(Pt 3):643-57. PubMed ID: 14724209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular determinants for assembly of G-protein-activated inwardly rectifying K+ channels.
    Woodward R; Stevens EB; Murrell-Lagnado RD
    J Biol Chem; 1997 Apr; 272(16):10823-30. PubMed ID: 9099737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.