These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 9245593)
21. The unfolded state of NTL9 is compact in the absence of denaturant. Anil B; Li Y; Cho JH; Raleigh DP Biochemistry; 2006 Aug; 45(33):10110-6. PubMed ID: 16906769 [TBL] [Abstract][Full Text] [Related]
22. Structural organization and assembly of flagellar hook protein from Salmonella typhimurium. Vonderviszt F; Závodszky P; Ishimura M; Uedaira H; Namba K J Mol Biol; 1995 Aug; 251(4):520-32. PubMed ID: 7658470 [TBL] [Abstract][Full Text] [Related]
23. Two peptide fragments G55-I72 and K97-A109 from staphylococcal nuclease exhibit different behaviors in conformational preferences for helix formation. Wang M; Shan L; Wang J Biopolymers; 2006 Oct; 83(3):268-79. PubMed ID: 16767771 [TBL] [Abstract][Full Text] [Related]
24. NMR structure of the N-terminal domain of Saccharomyces cerevisiae RNase HI reveals a fold with a strong resemblance to the N-terminal domain of ribosomal protein L9. Evans SP; Bycroft M J Mol Biol; 1999 Aug; 291(3):661-9. PubMed ID: 10448044 [TBL] [Abstract][Full Text] [Related]
25. Structure, function, and dynamics of the dimerization and DNA-binding domain of oncogenic transcription factor v-Myc. Fieber W; Schneider ML; Matt T; Kräutler B; Konrat R; Bister K J Mol Biol; 2001 Apr; 307(5):1395-410. PubMed ID: 11292350 [TBL] [Abstract][Full Text] [Related]
26. An investigation of the dynamics of ribosomal protein L9 using heteronuclear NMR relaxation measurements. Lillemoen J; Hoffman DW J Mol Biol; 1998 Aug; 281(3):539-51. PubMed ID: 9698568 [TBL] [Abstract][Full Text] [Related]
27. A tale of two secondary structure elements: when a beta-hairpin becomes an alpha-helix. Cregut D; Civera C; Macias MJ; Wallon G; Serrano L J Mol Biol; 1999 Sep; 292(2):389-401. PubMed ID: 10493883 [TBL] [Abstract][Full Text] [Related]
28. The HPr proteins from the thermophile Bacillus stearothermophilus can form domain-swapped dimers. Sridharan S; Razvi A; Scholtz JM; Sacchettini JC J Mol Biol; 2005 Feb; 346(3):919-31. PubMed ID: 15713472 [TBL] [Abstract][Full Text] [Related]
29. High-resolution X-ray structure of the DNA-binding protein HU from the hyper-thermophilic Thermotoga maritima and the determinants of its thermostability. Christodoulou E; Rypniewski WR; Vorgias CR Extremophiles; 2003 Apr; 7(2):111-22. PubMed ID: 12664263 [TBL] [Abstract][Full Text] [Related]
30. The dimerization domain of HNF-1alpha: structure and plasticity of an intertwined four-helix bundle with application to diabetes mellitus. Narayana N; Hua Q; Weiss MA J Mol Biol; 2001 Jul; 310(3):635-58. PubMed ID: 11439029 [TBL] [Abstract][Full Text] [Related]
31. Direct characterization of the folded, unfolded and urea-denatured states of the C-terminal domain of the ribosomal protein L9. Li Y; Picart F; Raleigh DP J Mol Biol; 2005 Jun; 349(4):839-46. PubMed ID: 15890362 [TBL] [Abstract][Full Text] [Related]
32. NMR solution structure of the archaebacterial chromosomal protein MC1 reveals a new protein fold. Paquet F; Culard F; Barbault F; Maurizot JC; Lancelot G Biochemistry; 2004 Nov; 43(47):14971-8. PubMed ID: 15554704 [TBL] [Abstract][Full Text] [Related]
33. Solution NMR structure and folding dynamics of the N terminus of a rat non-muscle alpha-tropomyosin in an engineered chimeric protein. Greenfield NJ; Huang YJ; Palm T; Swapna GV; Monleon D; Montelione GT; Hitchcock-DeGregori SE J Mol Biol; 2001 Sep; 312(4):833-47. PubMed ID: 11575936 [TBL] [Abstract][Full Text] [Related]
34. The solution structure of the periplasmic domain of the TonB system ExbD protein reveals an unexpected structural homology with siderophore-binding proteins. Garcia-Herrero A; Peacock RS; Howard SP; Vogel HJ Mol Microbiol; 2007 Nov; 66(4):872-89. PubMed ID: 17927700 [TBL] [Abstract][Full Text] [Related]
35. Folding properties of an annexin I domain: a 1H-15N NMR and CD study. Cordier-Ochsenbein F; Guerois R; Baleux F; Huynh-Dinh T; Chaffotte A; Neumann JM; Sanson A Biochemistry; 1996 Aug; 35(32):10347-57. PubMed ID: 8756690 [TBL] [Abstract][Full Text] [Related]
36. pH dependent thermodynamic and amide exchange studies of the C-terminal domain of the ribosomal protein L9: implications for unfolded state structure. Li Y; Horng JC; Raleigh DP Biochemistry; 2006 Jul; 45(28):8499-506. PubMed ID: 16834323 [TBL] [Abstract][Full Text] [Related]
37. Global analysis of the thermal and chemical denaturation of the N-terminal domain of the ribosomal protein L9 in H2O and D2O. Determination of the thermodynamic parameters, deltaH(o), deltaS(o), and deltaC(o)p and evaluation of solvent isotope effects. Kuhlman B; Raleigh DP Protein Sci; 1998 Nov; 7(11):2405-12. PubMed ID: 9828007 [TBL] [Abstract][Full Text] [Related]
38. Limited proteolysis of bovine alpha-lactalbumin: isolation and characterization of protein domains. Polverino de Laureto P; Scaramella E; Frigo M; Wondrich FG; De Filippis V; Zambonin M; Fontana A Protein Sci; 1999 Nov; 8(11):2290-303. PubMed ID: 10595532 [TBL] [Abstract][Full Text] [Related]
39. A calorimetric study of the folding-unfolding of an alpha-helix with covalently closed N and C-terminal loops. Taylor JW; Greenfield NJ; Wu B; Privalov PL J Mol Biol; 1999 Aug; 291(4):965-76. PubMed ID: 10452900 [TBL] [Abstract][Full Text] [Related]
40. Intrinsic helical propensities and stable secondary structure in a membrane-bound fragment (S4) of the shaker potassium channel. Halsall A; Dempsey CE J Mol Biol; 1999 Nov; 293(4):901-15. PubMed ID: 10543975 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]