These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 9245751)

  • 1. Direct visualization of collagen-bound proteoglycans by tapping-mode atomic force microscopy.
    Raspanti M; Alessandrini A; Ottani V; Ruggeri A
    J Struct Biol; 1997 Jul; 119(2):118-22. PubMed ID: 9245751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different patterns of collagen-proteoglycan interaction: a scanning electron microscopy and atomic force microscopy study.
    Raspanti M; Congiu T; Alessandrini A; Gobbi P; Ruggeri A
    Eur J Histochem; 2000; 44(4):335-43. PubMed ID: 11214858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tendon response to tensile stress: an ultrastructural investigation of collagen:proteoglycan interactions in stressed tendon.
    Cribb AM; Scott JE
    J Anat; 1995 Oct; 187 ( Pt 2)(Pt 2):423-8. PubMed ID: 7592005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collagen fibril surface: TMAFM, FEG-SEM and freeze-etching observations.
    Raspanti M; Alessandrini A; Gobbi P; Ruggeri A
    Microsc Res Tech; 1996 Sep; 35(1):87-93. PubMed ID: 8873062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence of rat tail tendon proteoglycans at emission field scanning electron microscopy.
    Dell'Orbo C; Gioglio L; Quacci D; Soldi C
    Eur J Histochem; 1996; 40(2):125-8. PubMed ID: 8839706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tendon glycosaminoglycan proteoglycan sidechains promote collagen fibril sliding-AFM observations at the nanoscale.
    Rigozzi S; Müller R; Stemmer A; Snedeker JG
    J Biomech; 2013 Feb; 46(4):813-8. PubMed ID: 23219277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphometry of cupromeronic blue-stained proteoglycan molecules in animal corneas, versus that of purified proteoglycans stained in vitro, implies that tertiary structures contribute to corneal ultrastructure.
    Scott JE
    J Anat; 1992 Feb; 180 ( Pt 1)(Pt 1):155-64. PubMed ID: 1452471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of proteoglycans in maintaining collagen fibril morphology.
    Dell'Orbo C; De Luca G; Gioglio L; Quacci D; Soldi C
    Histol Histopathol; 1995 Jul; 10(3):583-8. PubMed ID: 7579805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution and characterization of sulfated proteoglycans in the human trabecular tissue.
    Tawara A; Varner HH; Hollyfield JG
    Invest Ophthalmol Vis Sci; 1989 Oct; 30(10):2215-31. PubMed ID: 2793361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface located procollagen N-propeptides on dermatosparactic collagen fibrils are not cleaved by procollagen N-proteinase and do not inhibit binding of decorin to the fibril surface.
    Watson RB; Holmes DF; Graham HK; Nusgens BV; Kadler KE
    J Mol Biol; 1998 Apr; 278(1):195-204. PubMed ID: 9571043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence of a discrete axial structure in unimodal collagen fibrils.
    Raspanti M; Reguzzoni M; Protasoni M; Martini D
    Biomacromolecules; 2011 Dec; 12(12):4344-7. PubMed ID: 22066528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteoglycans contain a 4.6-A repeat in corneas with macular dystrophy: II. Histochemical evidence.
    Quantock AJ; Klintworth GK; Schanzlin DJ; Lenz ME; Thonar EJ
    Cornea; 1997 May; 16(3):322-6. PubMed ID: 9143806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of collagen fibril fusion during vertebrate tendon morphogenesis. The process relies on unipolar fibrils and is regulated by collagen-proteoglycan interaction.
    Graham HK; Holmes DF; Watson RB; Kadler KE
    J Mol Biol; 2000 Jan; 295(4):891-902. PubMed ID: 10656798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The pentapeptide NKISK affects collagen fibril interactions in a vertebrate tissue.
    Dahners LE; Lester GE; Caprise P
    J Orthop Res; 2000 Jul; 18(4):532-6. PubMed ID: 11052488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural aspects of the extracellular matrix of the tendon: an atomic force and scanning electron microscopy study.
    Raspanti M; Congiu T; Guizzardi S
    Arch Histol Cytol; 2002 Mar; 65(1):37-43. PubMed ID: 12002609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collagen fibril structure is affected by collagen concentration and decorin.
    Raspanti M; Viola M; Sonaggere M; Tira ME; Tenni R
    Biomacromolecules; 2007 Jul; 8(7):2087-91. PubMed ID: 17530890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collagen fibril morphology and organization: implications for force transmission in ligament and tendon.
    Provenzano PP; Vanderby R
    Matrix Biol; 2006 Mar; 25(2):71-84. PubMed ID: 16271455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycosaminoglycans show a specific periodic interaction with type I collagen fibrils.
    Raspanti M; Viola M; Forlino A; Tenni R; Gruppi C; Tira ME
    J Struct Biol; 2008 Oct; 164(1):134-9. PubMed ID: 18664384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of the binding force of the collagen molecule-decorin core protein complex in collagen fibril.
    Vesentini S; Redaelli A; Montevecchi FM
    J Biomech; 2005 Mar; 38(3):433-43. PubMed ID: 15652541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteoglycan: collagen interactions in dermatosparactic skin and tendon. An electron histochemical study using cupromeronic blue in a critical electrolyte concentration method.
    Scott JE; Haigh M; Nusgens B; Lapière CM
    Matrix; 1989; 9(6):437-42. PubMed ID: 2490852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.