These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 9246096)

  • 1. Correspondence between theoretical models and dual energy x-ray absorptiometry measurements of femoral cross-sectional growth during adolescence.
    van der Meulen MC; Marcus R; Bachrach LK; Carter DR
    J Orthop Res; 1997 May; 15(3):473-6. PubMed ID: 9246096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determinants of femoral geometry and structure during adolescent growth.
    van der Meulen MC; Ashford MW; Kiratli BJ; Bachrach LK; Carter DR
    J Orthop Res; 1996 Jan; 14(1):22-9. PubMed ID: 8618162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanobiology of femoral neck structure during adolescence.
    van der Meulen MC; Moro M; Kiratli BJ; Marcus R; Bachrach LK
    J Rehabil Res Dev; 2000; 37(2):201-8. PubMed ID: 10850826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sex-specific developmental changes in muscle size and bone geometry at the femoral shaft.
    Högler W; Blimkie CJ; Cowell CT; Inglis D; Rauch F; Kemp AF; Wiebe P; Duncan CS; Farpour-Lambert N; Woodhead HJ
    Bone; 2008 May; 42(5):982-9. PubMed ID: 18337201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone geometry and density in the skeleton of pre-pubertal gymnasts and school children.
    Ward KA; Roberts SA; Adams JE; Mughal MZ
    Bone; 2005 Jun; 36(6):1012-8. PubMed ID: 15876561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction models for evaluation of total-body bone mass with dual-energy X-ray absorptiometry among children and adolescents.
    Horlick M; Wang J; Pierson RN; Thornton JC
    Pediatrics; 2004 Sep; 114(3):e337-45. PubMed ID: 15342895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone mineral density in postmenarchal adolescent girls in the United States: associated biopsychosocial variables and bone turnover markers.
    Harel Z; Gold M; Cromer B; Bruner A; Stager M; Bachrach L; Wolter K; Reid C; Hertweck P; Nelson A; Nelson D; Coupey S; Johnson C; Burkman R; Bone H
    J Adolesc Health; 2007 Jan; 40(1):44-53. PubMed ID: 17185205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone mineral density in rural Thai adults living in Khon Kaen province.
    Pongchaiyakul C; Rojroongwasinkul N; Chotmongkol R; Kosulwat V; Charoenkiatkul S; Rajatanavin R
    J Med Assoc Thai; 2002 Feb; 85(2):235-44. PubMed ID: 12081125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Femoral bone structural geometry adapts to mechanical loading and is influenced by sex steroids: the Penn State Young Women's Health Study.
    Petit MA; Beck TJ; Lin HM; Bentley C; Legro RS; Lloyd T
    Bone; 2004 Sep; 35(3):750-9. PubMed ID: 15336612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscular development and physical activity as major determinants of femoral bone mass acquisition during growth.
    Vicente-Rodriguez G; Ara I; Perez-Gomez J; Dorado C; Calbet JA
    Br J Sports Med; 2005 Sep; 39(9):611-6. PubMed ID: 16118297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diaphyseal bone growth and adaptation: models and data.
    van der Meulen MC
    Stud Health Technol Inform; 1997; 40():17-23. PubMed ID: 10168877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Examination of femoral-neck structure using finite element model and bone mineral density using dual-energy X-ray absorptiometry.
    Qian JG; Song YW; Tang X; Zhang S
    Clin Biomech (Bristol, Avon); 2009 Jan; 24(1):47-52. PubMed ID: 18980785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lifestyle factors and the development of bone mass and bone strength in young women.
    Lloyd T; Petit MA; Lin HM; Beck TJ
    J Pediatr; 2004 Jun; 144(6):776-82. PubMed ID: 15192626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone mineral density of lumbar spine and proximal femur in normal Thai women.
    Limpaphayom KK; Taechakraichana N; Jaisamrarn U; Bunyavejchevin S; Chaikittisilpa S; Poshyachinda M; Taechamahachai C; Havanond P; Onthuam Y; Lumbiganon P; Kamolratanakul P
    J Med Assoc Thai; 2000 Jul; 83(7):725-31. PubMed ID: 10932505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lean tissue mass is a better predictor of bone mineral content and density than body weight in prepubertal girls.
    Courteix D; Lespessailles E; Loiseau-Peres S; Obert P; Ferry B; Benhamou CL
    Rev Rhum Engl Ed; 1998 May; 65(5):328-36. PubMed ID: 9636952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Postcranial robusticity in Homo. III: Ontogeny.
    Ruff CB; Walker A; Trinkaus E
    Am J Phys Anthropol; 1994 Jan; 93(1):35-54. PubMed ID: 8141241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Body mass is the primary determinant of midfemoral bone acquisition during adolescent growth.
    Moro M; van der Meulen MC; Kiratli BJ; Marcus R; Bachrach LK; Carter DR
    Bone; 1996 Nov; 19(5):519-26. PubMed ID: 8922652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Levels of physical activity that predict optimal bone mass in adolescents: the HELENA study.
    Gracia-Marco L; Moreno LA; Ortega FB; León F; Sioen I; Kafatos A; Martinez-Gomez D; Widhalm K; Castillo MJ; Vicente-Rodríguez G;
    Am J Prev Med; 2011 Jun; 40(6):599-607. PubMed ID: 21565650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of cortical bone geometry in the human femoral and tibial diaphysis.
    Gosman JH; Hubbell ZR; Shaw CN; Ryan TM
    Anat Rec (Hoboken); 2013 May; 296(5):774-87. PubMed ID: 23533061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of socioeconomic status on endochondral and appositional bone growth, and acquisition of cortical bone in children from 19th century Birmingham, England.
    Mays S; Ives R; Brickley M
    Am J Phys Anthropol; 2009 Nov; 140(3):410-6. PubMed ID: 19425094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.