BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 9246389)

  • 1. Brachial arterial blood flow during static handgrip exercise of short duration at varying intensities studied by a Doppler ultrasound method.
    Kagaya A; Homma S
    Acta Physiol Scand; 1997 Jul; 160(3):257-65. PubMed ID: 9246389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time course of brachial artery diameter responses to rhythmic handgrip exercise in humans.
    Shoemaker JK; MacDonald MJ; Hughson RL
    Cardiovasc Res; 1997 Jul; 35(1):125-31. PubMed ID: 9302356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Opposing effects of shear-mediated dilation and myogenic constriction on artery diameter in response to handgrip exercise in humans.
    Atkinson CL; Carter HH; Naylor LH; Dawson EA; Marusic P; Hering D; Schlaich MP; Thijssen DH; Green DJ
    J Appl Physiol (1985); 2015 Oct; 119(8):858-64. PubMed ID: 26294751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forearm blood flow follows work rate during submaximal dynamic forearm exercise independent of sex.
    Gonzales JU; Thompson BC; Thistlethwaite JR; Harper AJ; Scheuermann BW
    J Appl Physiol (1985); 2007 Dec; 103(6):1950-7. PubMed ID: 17932302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gender differences in brachial blood flow during fatiguing intermittent handgrip.
    Saito Y; Iemitsu M; Otsuki T; Maeda S; Ajisaka R
    Med Sci Sports Exerc; 2008 Apr; 40(4):684-90. PubMed ID: 18317376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blood flow and arterial vessel diameter change during graded handgrip exercise in dominant and non-dominant forearms of tennis players.
    Kagaya A; Ohmori F; Okuyama S; Muraoka Y; Sato K
    Adv Exp Med Biol; 2010; 662():365-70. PubMed ID: 20204817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential responses to sympathetic stimulation in the cerebral and brachial circulations during rhythmic handgrip exercise in humans.
    Hartwich D; Fowler KL; Wynn LJ; Fisher JP
    Exp Physiol; 2010 Nov; 95(11):1089-97. PubMed ID: 20851860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Upright posture reduces forearm blood flow early in exercise.
    Shoemaker JK; McQuillan PM; Sinoway LI
    Am J Physiol; 1999 May; 276(5):R1434-42. PubMed ID: 10233037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vasoconstrictor responsiveness in contracting human muscle: influence of contraction frequency, contractile work, and metabolic rate.
    Kruse NT; Hughes WE; Ueda K; Casey DP
    Eur J Appl Physiol; 2017 Aug; 117(8):1697-1706. PubMed ID: 28624852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid blunting of sympathetic vasoconstriction in the human forearm at the onset of exercise.
    Tschakovsky ME; Hughson RL
    J Appl Physiol (1985); 2003 May; 94(5):1785-92. PubMed ID: 12524374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The exercise pressor response to sustained handgrip does not augment blood flow in the contracting forearm skeletal muscle.
    Hansen J; Jacobsen TN; Amtorp O
    Acta Physiol Scand; 1993 Dec; 149(4):419-25. PubMed ID: 8128890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Failure of prostaglandins to modulate the time course of blood flow during dynamic forearm exercise in humans.
    Shoemaker JK; Naylor HL; Pozeg ZI; Hughson RL
    J Appl Physiol (1985); 1996 Oct; 81(4):1516-21. PubMed ID: 8904562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics and effectiveness of vasodilatory and pressor compensation for reduced relaxation time during rhythmic forearm contractions.
    Bentley RF; Poitras VJ; Hong T; Tschakovsky ME
    Exp Physiol; 2017 Jun; 102(6):621-634. PubMed ID: 28397384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vasoconstriction seen in coronary bypass grafts during handgrip in humans.
    Momen A; Gahremanpour A; Mansoor A; Kunselman A; Blaha C; Pae W; Leuenberger UA; Sinoway LI
    J Appl Physiol (1985); 2007 Feb; 102(2):735-9. PubMed ID: 17068218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of muscle training on resting blood flow and forearm vessel diameter in patients with chronic renal failure.
    Kumar S; Seward J; Wilcox A; Torella F
    Br J Surg; 2010 Jun; 97(6):835-8. PubMed ID: 20309951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blood flow in the brachial artery increases after intense cycling exercise.
    Medbø JI; Hisdal J; Stranden E
    Scand J Clin Lab Invest; 2009; 69(7):752-63. PubMed ID: 19929718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exercise-related time course of pulsatility index in brachial artery following forearm exercise assessed by Doppler ultrasound.
    Osada T
    Tohoku J Exp Med; 2004 Aug; 203(4):241-52. PubMed ID: 15297729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relative contraction force producing a reduction in calf blood flow by superimposing forearm exercise on lower leg exercise.
    Kagaya A
    Eur J Appl Physiol Occup Physiol; 1993; 66(4):309-14. PubMed ID: 8495691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of blood flow occlusion on the development of peripheral and central fatigue during small muscle mass handgrip exercise.
    Broxterman RM; Craig JC; Smith JR; Wilcox SL; Jia C; Warren S; Barstow TJ
    J Physiol; 2015 Sep; 593(17):4043-54. PubMed ID: 26104881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of handgrip exercise intensity on brachial artery flow-mediated dilation.
    Atkinson CL; Carter HH; Dawson EA; Naylor LH; Thijssen DH; Green DJ
    Eur J Appl Physiol; 2015 Aug; 115(8):1705-13. PubMed ID: 25805181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.