These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 9246805)

  • 21. A method for personal sampling and analysis of nanogram amounts of formaldehyde in air.
    Bisgaard P; Molhave L; Rietz B; Wilhardt P
    Am Ind Hyg Assoc J; 1984 Jun; 45(6):425-9. PubMed ID: 6741798
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Application of microchip electrophoresis with electrochemical detection to environmental aldehyde monitoring.
    Dossi N; Susmel S; Toniolo R; Pizzariello A; Bontempelli G
    Electrophoresis; 2009 Oct; 30(19):3465-71. PubMed ID: 19802854
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ozone removal in the collection of carbonyl compounds in air.
    Uchiyama S; Inaba Y; Kunugita N
    J Chromatogr A; 2012 Mar; 1229():293-7. PubMed ID: 22333680
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimization of a solid sorbent dynamic personal air sampling method for aldehydes.
    Shen Y; Hee SS
    Appl Occup Environ Hyg; 2000 Feb; 15(2):228-34. PubMed ID: 10675981
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simultaneous determination of airborne acetaldehyde, acetone, 2-butanone, and cyclohexanone using sampling tubes with 2,4-dinitrophenylhydrazine-coated solid sorbent.
    Binding N; Schilder K; Czeschinski PA; Witting U
    Toxicol Lett; 1998 Aug; 96-97():289-99. PubMed ID: 9820680
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Occupational exposure of aldehydes resulting from the storage of wood pellets.
    Rahman MA; Rossner A; Hopke PK
    J Occup Environ Hyg; 2017 Jun; 14(6):417-426. PubMed ID: 28475439
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A solid sorbent personal sampling method for the determination of acrolein in air.
    Hurley GF; Ketcham NH
    Am Ind Hyg Assoc J; 1978 Aug; 39(8):615-9. PubMed ID: 696622
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of Sorbent Sampling and Analysis Procedures for Acetone in Workplace Air: Variations of Concentration and Relative Humidity.
    Soo JC; Lebouf RF; Chisholm WP; Nelson J; Roberts J; Kashon ML; Lee EG; Harper M
    Ann Work Expo Health; 2020 Jan; 64(1):96-105. PubMed ID: 31786604
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determination of aldehydes and ketones in air samples using cryotrapping sampling.
    Levart A; Veber M
    Chemosphere; 2001 Aug; 44(4):701-8. PubMed ID: 11482659
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The determination of carbonyl compounds in air using a robotic sampling preparation system integrated to a gas chromatograph with a nitrogen-phosphorus detector.
    Suliman FE; Soma Y
    J Environ Monit; 2000 Oct; 2(5):470-5. PubMed ID: 11254052
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of analytical techniques for the determination of aldehydes in test chambers.
    Salthammer T; Mentese S
    Chemosphere; 2008 Nov; 73(8):1351-6. PubMed ID: 18722643
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The development and evaluation of a hydrobromic acid-coated sampling tube for measuring occupational exposures to ethylene oxide.
    Cummins KJ; Schultz GR; Lee JS; Nelson JH; Reading JC
    Am Ind Hyg Assoc J; 1987 Jun; 48(6):563-73. PubMed ID: 3039819
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simultaneous determination of C1-C4 carboxylic acids and aldehydes using 2,4-dinitrophenylhydrazine-impregnated silica gel and high-performance liquid chromatography.
    Uchiyama S; Matsushima E; Aoyagi S; Ando M
    Anal Chem; 2004 Oct; 76(19):5849-54. PubMed ID: 15456306
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of one-step hollow fiber supported liquid phase sampling technique for occupational workplace air analysis using high performance liquid chromatography with ultra-violet detector.
    Yan CT; Chien HY
    J Chromatogr A; 2012 Jul; 1246():145-9. PubMed ID: 22673811
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new passive sampler for regulated workplace aldehydes.
    Tsai SW; Hee SS
    Appl Occup Environ Hyg; 1999 Apr; 14(4):255-62. PubMed ID: 10457648
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interlaboratory evaluation of cellulosic acid-soluble internal air sampling capsules for multi-element analysis.
    Andrews RN; Feng HA; Ashley K
    J Occup Environ Hyg; 2016; 13(1):40-7. PubMed ID: 26308974
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Weighing precision of filters used in dust measurements: repeatability and reproducibility].
    Stroszejn-Mrowca G; Mikołajczyk U
    Med Pr; 2006; 57(3):257-62. PubMed ID: 17125032
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Determination of airborne carbonyls: comparison of a thermal desorption/GC method with the standard DNPH/HPLC method.
    Ho SS; Yu JZ
    Environ Sci Technol; 2004 Feb; 38(3):862-70. PubMed ID: 14968875
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interlaboratory evaluation of a standardized inductively coupled plasma mass spectrometry method for the determination of trace beryllium in air filter samples.
    Ashley K; Brisson MJ; Howe AM; Bartley DL
    J Occup Environ Hyg; 2009 Dec; 6(12):745-50. PubMed ID: 19894175
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of methodologies for identification and quantification of hazardous air pollutants from turbine engine emissions.
    Anneken D; Striebich R; DeWitt MJ; Klingshirn C; Corporan E
    J Air Waste Manag Assoc; 2015 Mar; 65(3):336-46. PubMed ID: 25947129
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.