BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 9248502)

  • 41. Fatigue in two-pilot operations: implications for flight and duty time limitations.
    Powell D; Spencer MB; Holland D; Petrie KJ
    Aviat Space Environ Med; 2008 Nov; 79(11):1047-50. PubMed ID: 18998486
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Controlled breaks as a fatigue countermeasure on the flight deck.
    Neri DF; Oyung RL; Colletti LM; Mallis MM; Tam PY; Dinges DF
    Aviat Space Environ Med; 2002 Jul; 73(7):654-64. PubMed ID: 12137101
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Flight schedules and occupational accidents among cabin crew: a longitudinal study.
    van Drongelen A; Boot CR; Pas LW; Penders GB; Hlobil H; van der Beek AJ; Smid T
    Aviat Space Environ Med; 2013 Dec; 84(12):1281-5. PubMed ID: 24459800
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sleep deficit and stress hormones in helicopter pilots on 7-day duty for emergency medical services.
    Samel A; Vejvoda M; Maass H
    Aviat Space Environ Med; 2004 Nov; 75(11):935-40. PubMed ID: 15558991
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mitigating and monitoring flight crew fatigue on a westward ultra-long-range flight.
    Signal TL; Mulrine HM; van den Berg MJ; Smith AA; Gander PH; Serfontein W
    Aviat Space Environ Med; 2014 Dec; 85(12):1199-208. PubMed ID: 25479262
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Shift length and on-duty rest patterns in rotor-wing air medical programs.
    Frakes MA; Kelly JG
    Air Med J; 2004; 23(6):34-9. PubMed ID: 15520734
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Large-Scale European Union Study of Aircrew Fatigue During Long Night and Disruptive Duties.
    Sallinen M; van Dijk H; Aeschbach D; Maij A; Åkerstedt T
    Aerosp Med Hum Perform; 2020 Aug; 91(8):628-635. PubMed ID: 32693870
    [No Abstract]   [Full Text] [Related]  

  • 48. Risk of Fatigue Among Airline Crew During 4 Consecutive Days of Flight Duty.
    Goffeng EM; Wagstaff A; Nordby KC; Meland A; Goffeng LO; Skare Ø; Lilja D; Lie JS
    Aerosp Med Hum Perform; 2019 May; 90(5):466-474. PubMed ID: 31023407
    [No Abstract]   [Full Text] [Related]  

  • 49. Pilot In-Flight Sleep During Long-Range and Ultra-Long Range Commercial Airline Flights.
    Rempe MJ; Basiarz E; Rasmussen I; Belenky G; Lamp A
    Aerosp Med Hum Perform; 2022 Apr; 93(4):368-375. PubMed ID: 35354516
    [No Abstract]   [Full Text] [Related]  

  • 50. Workload and fatigue--in-flight EEG changes.
    Howitt JS; Hay AE; Shergold GR; Ferres HM
    Aviat Space Environ Med; 1978 Oct; 49(10):1197-202. PubMed ID: 708348
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Working conditions and fatigue in professional truck drivers at Israeli ports.
    Sabbagh-Ehrlich S; Friedman L; Richter ED
    Inj Prev; 2005 Apr; 11(2):110-4. PubMed ID: 15805441
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Circadian rhythms in airline pilots submitted to long-haul transmeridian flights.
    Ariznavarreta C; Cardinali DP; Villanúa MA; Granados B; Martín M; Chiesa JJ; Golombek DA; Tresguerres JA
    Aviat Space Environ Med; 2002 May; 73(5):445-55. PubMed ID: 12014603
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fatigue, workload and adaptive driver systems.
    Hancock PA; Verwey WB
    Accid Anal Prev; 1997 Jul; 29(4):495-506. PubMed ID: 9248508
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Monitoring and Managing Cabin Crew Sleep and Fatigue During an Ultra-Long Range Trip.
    van den Berg MJ; Signal TL; Mulrine HM; Smith AA; Gander PH; Serfontein W
    Aerosp Med Hum Perform; 2015 Aug; 86(8):705-13. PubMed ID: 26387894
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Acute and cumulative effects of scheduling on aircrew fatigue in ultra-short-haul operations.
    Åkerstedt T; Klemets T; Karlsson D; Häbel H; Widman L; Sallinen M
    J Sleep Res; 2021 Oct; 30(5):e13305. PubMed ID: 33631838
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Early starts and late finishes both reduce alertness and performance among short-haul airline pilots.
    Arsintescu L; Pradhan S; Chachad RG; Gregory KB; Mulligan JB; Flynn-Evans EE
    J Sleep Res; 2022 Jun; 31(3):e13521. PubMed ID: 34854507
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fatigue, Schedules, Sleep, and Sleepiness in U.S. Commercial Pilots During COVID-19.
    Hilditch CJ; Flynn-Evans EE
    Aerosp Med Hum Perform; 2022 May; 93(5):433-441. PubMed ID: 35551720
    [No Abstract]   [Full Text] [Related]  

  • 58. Electrooculographic and performance indices of fatigue during simulated flight.
    Morris TL; Miller JC
    Biol Psychol; 1996 Feb; 42(3):343-60. PubMed ID: 8652752
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Equal to or better than: The application of statistical non-inferiority to fatigue risk management.
    Lamp A; Chen JMC; McCullough D; Belenky G
    Accid Anal Prev; 2019 May; 126():184-190. PubMed ID: 29428150
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Duty periods with early start times restrict the amount of sleep obtained by short-haul airline pilots.
    Roach GD; Sargent C; Darwent D; Dawson D
    Accid Anal Prev; 2012 Mar; 45 Suppl():22-6. PubMed ID: 22239926
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.