These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 9249028)
1. Mode of primary binding to target membranes and pore formation induced by Vibrio cholerae cytolysin (hemolysin). Zitzer A; Palmer M; Weller U; Wassenaar T; Biermann C; Tranum-Jensen J; Bhakdi S Eur J Biochem; 1997 Jul; 247(1):209-16. PubMed ID: 9249028 [TBL] [Abstract][Full Text] [Related]
2. Pore formation by Vibrio cholerae cytolysin follows the same archetypical mode as beta-barrel toxins from gram-positive organisms. Löhner S; Walev I; Boukhallouk F; Palmer M; Bhakdi S; Valeva A FASEB J; 2009 Aug; 23(8):2521-8. PubMed ID: 19276173 [TBL] [Abstract][Full Text] [Related]
3. Trapping of Vibrio cholerae cytolysin in the membrane-bound monomeric state blocks membrane insertion and functional pore formation by the toxin. Rai AK; Chattopadhyay K J Biol Chem; 2014 Jun; 289(24):16978-87. PubMed ID: 24794872 [TBL] [Abstract][Full Text] [Related]
4. Characterization of Vibrio cholerae El Tor cytolysin as an oligomerizing pore-forming toxin. Zitzer A; Walev I; Palmer M; Bhakdi S Med Microbiol Immunol; 1995 May; 184(1):37-44. PubMed ID: 8538577 [TBL] [Abstract][Full Text] [Related]
5. Crystal structure of the Vibrio cholerae cytolysin (VCC) pro-toxin and its assembly into a heptameric transmembrane pore. Olson R; Gouaux E J Mol Biol; 2005 Jul; 350(5):997-1016. PubMed ID: 15978620 [TBL] [Abstract][Full Text] [Related]
6. Single point mutation in Vibrio cholerae cytolysin compromises the membrane pore-formation mechanism of the toxin. Paul K; Chattopadhyay K FEBS J; 2012 Nov; 279(21):4039-51. PubMed ID: 22934938 [TBL] [Abstract][Full Text] [Related]
7. Vibrio cholerae cytolysin: Multiple facets of the membrane interaction mechanism of a β-barrel pore-forming toxin. Kathuria R; Chattopadhyay K IUBMB Life; 2018 Apr; 70(4):260-266. PubMed ID: 29469977 [TBL] [Abstract][Full Text] [Related]
8. Glu289 residue in the pore-forming motif of Vibrio cholerae cytolysin is important for efficient β-barrel pore formation. Mondal AK; Sengupta N; Singh M; Biswas R; Lata K; Lahiri I; Dutta S; Chattopadhyay K J Biol Chem; 2022 Oct; 298(10):102441. PubMed ID: 36055404 [TBL] [Abstract][Full Text] [Related]
9. The Relationship between Glycan Binding and Direct Membrane Interactions in Vibrio cholerae Cytolysin, a Channel-forming Toxin. De S; Bubnys A; Alonzo F; Hyun J; Lary JW; Cole JL; Torres VJ; Olson R J Biol Chem; 2015 Nov; 290(47):28402-28415. PubMed ID: 26416894 [TBL] [Abstract][Full Text] [Related]
10. Structural basis of mammalian glycan targeting by Vibrio cholerae cytolysin and biofilm proteins. De S; Kaus K; Sinclair S; Case BC; Olson R PLoS Pathog; 2018 Feb; 14(2):e1006841. PubMed ID: 29432487 [TBL] [Abstract][Full Text] [Related]
11. HlyA hemolysin of Vibrio cholerae O1 biotype E1 Tor. Identification of the hemolytic complex and evidence for the formation of anion-selective ion-permeable channels. Menzl K; Maier E; Chakraborty T; Benz R Eur J Biochem; 1996 Sep; 240(3):646-54. PubMed ID: 8856066 [TBL] [Abstract][Full Text] [Related]
12. Revisiting the role of cholesterol in regulating the pore-formation mechanism of Kathuria R; Mondal AK; Sharma R; Bhattacharyya S; Chattopadhyay K Biochem J; 2018 Oct; 475(19):3039-3055. PubMed ID: 30206140 [No Abstract] [Full Text] [Related]
13. Vibrio cholerae cytolysin is composed of an alpha-hemolysin-like core. Olson R; Gouaux E Protein Sci; 2003 Feb; 12(2):379-83. PubMed ID: 12538902 [TBL] [Abstract][Full Text] [Related]
14. Outer membrane vesicles mediate transport of biologically active Vibrio cholerae cytolysin (VCC) from V. cholerae strains. Elluri S; Enow C; Vdovikova S; Rompikuntal PK; Dongre M; Carlsson S; Pal A; Uhlin BE; Wai SN PLoS One; 2014; 9(9):e106731. PubMed ID: 25187967 [TBL] [Abstract][Full Text] [Related]
15. Revisiting the oligomerization mechanism of Vibrio cholerae cytolysin, a beta-barrel pore-forming toxin. Rai AK; Chattopadhyay K Biochem Biophys Res Commun; 2016 Jun; 474(3):421-427. PubMed ID: 27150630 [TBL] [Abstract][Full Text] [Related]
16. Functional mapping of the lectin activity site on the β-prism domain of vibrio cholerae cytolysin: implications for the membrane pore-formation mechanism of the toxin. Rai AK; Paul K; Chattopadhyay K J Biol Chem; 2013 Jan; 288(3):1665-73. PubMed ID: 23209283 [TBL] [Abstract][Full Text] [Related]
17. Pre-pore oligomer formation by Vibrio cholerae cytolysin: insights from a truncated variant lacking the pore-forming pre-stem loop. Paul K; Chattopadhyay K Biochem Biophys Res Commun; 2014 Jan; 443(1):189-93. PubMed ID: 24291710 [TBL] [Abstract][Full Text] [Related]
18. Bacterial two-component and hetero-heptameric pore-forming cytolytic toxins: structures, pore-forming mechanism, and organization of the genes. Kaneko J; Kamio Y Biosci Biotechnol Biochem; 2004 May; 68(5):981-1003. PubMed ID: 15170101 [TBL] [Abstract][Full Text] [Related]
19. Physicochemical constraints of elevated pH affect efficient membrane interaction and arrest an abortive membrane-bound oligomeric intermediate of the beta-barrel pore-forming toxin Vibrio cholerae cytolysin. Rai AK; Kundu N; Chattopadhyay K Arch Biochem Biophys; 2015 Oct; 583():9-17. PubMed ID: 26235489 [TBL] [Abstract][Full Text] [Related]
20. The mode of action of Vibrio cholerae cytolysin. The influences on both erythrocytes and planar lipid bilayers. Krasilnikov OV; Muratkhodjaev JN; Zitzer AO Biochim Biophys Acta; 1992 Oct; 1111(1):7-16. PubMed ID: 1382601 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]