These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 9249470)

  • 21. Comparison of linear and nonlinear formulations of the three-element windkessel model.
    Fogliardi R; Di Donfrancesco M; Burattini R
    Am J Physiol; 1996 Dec; 271(6 Pt 2):H2661-8. PubMed ID: 8997329
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Patient-specific modeling of blood flow and pressure in human coronary arteries.
    Kim HJ; Vignon-Clementel IE; Coogan JS; Figueroa CA; Jansen KE; Taylor CA
    Ann Biomed Eng; 2010 Oct; 38(10):3195-209. PubMed ID: 20559732
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Autoregressive analysis of aortic input impedance: comparison with Fourier transform.
    Kubota T; Itaya R; Alexander J; Todaka K; Sugimachi M; Sunagawa K
    Am J Physiol; 1991 Mar; 260(3 Pt 2):H998-1002. PubMed ID: 2000993
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pressure-flow loops and instantaneous input impedance in the thoracic aorta: another way to assess the effect of aortic bypass graft implantation on myocardial, brain, and subdiaphragmatic perfusion.
    Mekkaoui C; Rolland PH; Friggi A; Rasigni M; Mesana TG
    J Thorac Cardiovasc Surg; 2003 Mar; 125(3):699-710. PubMed ID: 12658214
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aortic input impedance in infants and children.
    Sharp MK; Pantalos GM; Minich L; Tani LY; McGough EC; Hawkins JA
    J Appl Physiol (1985); 2000 Jun; 88(6):2227-39. PubMed ID: 10846040
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exponentially tapered T-tube model in the characterization of arterial non-uniformity.
    Chang KC; Kuo TS
    J Theor Biol; 1996 Nov; 183(1):35-46. PubMed ID: 8959109
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Input impedance of distributed arterial structures as used in investigations of underlying concepts in arterial haemodynamics.
    Avolio A
    Med Biol Eng Comput; 2009 Feb; 47(2):143-51. PubMed ID: 18949501
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of an in-vitro circulatory system with known resistance and capacitance.
    Offerdahl CD; Schaub JD; Koenig SC; Swope RD; Ewert DL
    Biomed Sci Instrum; 1996; 32():183-8. PubMed ID: 8672667
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of extraanatomic bypass on aortic input impedance studied in open chest dogs. Should the vascular prosthesis be compliant to unload the left ventricle?
    Morita S; Kuboyama I; Asou T; Tokunaga K; Nose Y; Nakamura M; Harasawa Y; Sunagawa K
    J Thorac Cardiovasc Surg; 1991 Nov; 102(5):774-83. PubMed ID: 1834892
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Using hydraulic input impedance in determination of changes in the arteries of different calibre].
    Naumov AIu; Balashov SA; Mel'kumiants AM
    Ross Fiziol Zh Im I M Sechenova; 2003 Dec; 89(12):1507-15. PubMed ID: 14870488
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Models of the arterial tree.
    Westerhof N; Stergiopulos N
    Stud Health Technol Inform; 2000; 71():65-77. PubMed ID: 10977604
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sensitivity analysis of respiratory parameter uncertainties: impact of criterion function form and constraints.
    Lutchen KR
    J Appl Physiol (1985); 1990 Aug; 69(2):766-75. PubMed ID: 2228887
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Response of systemic arterial input impedance to volume expansion and hemorrhage.
    Dujardin JP; Stone DN; Paul LT; Pieper HP
    Am J Physiol; 1980 Jun; 238(6):H902-8. PubMed ID: 7386649
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A physical model of the human systemic arterial tree.
    Ferrari G; Nicoletti A; De Lazzari C; Clemente F; Tosti G; Guaragno M; Mimmo R; Ambrosi D; Górczyńska K
    Int J Artif Organs; 2000 Sep; 23(9):647-57. PubMed ID: 11059889
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Smooth muscle relaxation and local hydraulic impedance properties of the aorta.
    Cholley BP; Lang RM; Korcarz CE; Shroff SG
    J Appl Physiol (1985); 2001 Jun; 90(6):2427-38. PubMed ID: 11356810
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Clinical achievements of impedance analysis.
    Mitchell GF
    Med Biol Eng Comput; 2009 Feb; 47(2):153-63. PubMed ID: 18853214
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A review of methods to determine the functional arterial parameters stiffness and resistance.
    Westerhof N; Westerhof BE
    J Hypertens; 2013 Sep; 31(9):1769-75. PubMed ID: 23777762
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of systemic arterial mechanical properties from infancy to adulthood interpreted by four-element windkessel models.
    Burattini R; Di Salvia PO
    J Appl Physiol (1985); 2007 Jul; 103(1):66-79. PubMed ID: 17303709
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional origin of reflected pressure waves in a multibranched model of the human arterial system.
    Karamanoglu M; Gallagher DE; Avolio AP; O'Rourke MF
    Am J Physiol; 1994 Nov; 267(5 Pt 2):H1681-8. PubMed ID: 7977799
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A fractional derivative model to describe arterial viscoelasticity.
    Craiem D; Armentano RL
    Biorheology; 2007; 44(4):251-63. PubMed ID: 18094449
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.