These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 9250376)
41. Carnitine deficiency disorders in children. Stanley CA Ann N Y Acad Sci; 2004 Nov; 1033():42-51. PubMed ID: 15591002 [TBL] [Abstract][Full Text] [Related]
42. Effect of sodium benzoate on cerebral and hepatic energy metabolites in spf mice with congenital hyperammonemia. Ratnakumari L; Qureshi IA; Butterworth RF Biochem Pharmacol; 1993 Jan; 45(1):137-46. PubMed ID: 8424807 [TBL] [Abstract][Full Text] [Related]
43. Assay of acyl-CoA dehydrogenases in muscle and liver and identification of four new cases of medium-chain acyl-CoA dehydrogenase deficiency associated with systemic carnitine deficiency. Zierz S; Engel AG; Romshe CA Adv Neurol; 1988; 48():231-7. PubMed ID: 3334785 [No Abstract] [Full Text] [Related]
45. Chronic acetyl-L-carnitine alters brain energy metabolism and increases noradrenaline and serotonin content in healthy mice. Smeland OB; Meisingset TW; Borges K; Sonnewald U Neurochem Int; 2012 Jul; 61(1):100-7. PubMed ID: 22549035 [TBL] [Abstract][Full Text] [Related]
46. New insights on the mechanisms of valproate-induced hyperammonemia: inhibition of hepatic N-acetylglutamate synthase activity by valproyl-CoA. Aires CC; van Cruchten A; Ijlst L; de Almeida IT; Duran M; Wanders RJ; Silva MF J Hepatol; 2011 Aug; 55(2):426-34. PubMed ID: 21147182 [TBL] [Abstract][Full Text] [Related]
47. Hepatic triglyceride contents are genetically determined in mice: results of a strain survey. Lin X; Yue P; Chen Z; Schonfeld G Am J Physiol Gastrointest Liver Physiol; 2005 Jun; 288(6):G1179-89. PubMed ID: 15591160 [TBL] [Abstract][Full Text] [Related]
49. Neonatal screening for very long-chain acyl-coA dehydrogenase deficiency: enzymatic and molecular evaluation of neonates with elevated C14:1-carnitine levels. Liebig M; Schymik I; Mueller M; Wendel U; Mayatepek E; Ruiter J; Strauss AW; Wanders RJ; Spiekerkoetter U Pediatrics; 2006 Sep; 118(3):1065-9. PubMed ID: 16950999 [TBL] [Abstract][Full Text] [Related]
50. Influence of dietary fatty acid chain-length on metabolic tolerance in mouse models of inherited defects in mitochondrial fatty acid beta-oxidation. Schuler AM; Gower BA; Matern D; Rinaldo P; Wood PA Mol Genet Metab; 2004 Dec; 83(4):322-9. PubMed ID: 15589119 [TBL] [Abstract][Full Text] [Related]
51. Severe riboflavin deficiency induces alterations in the hepatic proteome of starter Pekin ducks. Tang J; Hegeman MA; Hu J; Xie M; Shi W; Jiang Y; de Boer V; Guo Y; Hou S; Keijer J Br J Nutr; 2017 Nov; 118(9):641-650. PubMed ID: 29185933 [TBL] [Abstract][Full Text] [Related]
52. The regulation of acyl-CoA dehydrogenases in adipose tissue by rosiglitazone. Goetzman ES Obesity (Silver Spring); 2009 Jan; 17(1):196-8. PubMed ID: 18948967 [TBL] [Abstract][Full Text] [Related]
53. Increased formation of short-chain organic acids after chronic ethanol administration and its interaction with the carnitine pool in rat. Calabrese V; Calvani M; Butterfield DA Arch Biochem Biophys; 2004 Nov; 431(2):271-8. PubMed ID: 15488476 [TBL] [Abstract][Full Text] [Related]
56. Is autism a disorder of fatty acid metabolism? Possible dysfunction of mitochondrial beta-oxidation by long chain acyl-CoA dehydrogenase. Clark-Taylor T; Clark-Taylor BE Med Hypotheses; 2004; 62(6):970-5. PubMed ID: 15142659 [TBL] [Abstract][Full Text] [Related]
57. Metabolic changes associated with hyperammonemia in patients with propionic acidemia. Filipowicz HR; Ernst SL; Ashurst CL; Pasquali M; Longo N Mol Genet Metab; 2006 Jun; 88(2):123-30. PubMed ID: 16406646 [TBL] [Abstract][Full Text] [Related]
58. Reduction in the MK-801 binding sites of the NMDA sub-type of glutamate receptor in a mouse model of congenital hyperammonemia: prevention by acetyl-L-carnitine. Rao KV; Qureshi IA Neuropharmacology; 1999 Mar; 38(3):383-94. PubMed ID: 10219976 [TBL] [Abstract][Full Text] [Related]
59. Functional correction of short-chain acyl-CoA dehydrogenase deficiency in transgenic mice: implications for gene therapy of human mitochondrial enzyme deficiencies. Kelly CL; Rhead WJ; Kutschke WK; Brix AE; Hamm DA; Pinkert CA; Lindsey JR; Wood PA Hum Mol Genet; 1997 Sep; 6(9):1451-5. PubMed ID: 9285781 [TBL] [Abstract][Full Text] [Related]
60. Rapid degradation of short-chain acyl-CoA dehydrogenase variants with temperature-sensitive folding defects occurs after import into mitochondria. Corydon TJ; Bross P; Jensen TG; Corydon MJ; Lund TB; Jensen UB; Kim JJ; Gregersen N; Bolund L J Biol Chem; 1998 May; 273(21):13065-71. PubMed ID: 9582344 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]