BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 9250389)

  • 1. Mechanisms controlling neuronal plasticity in somatosensory cortex.
    Dykes RW
    Can J Physiol Pharmacol; 1997 May; 75(5):535-45. PubMed ID: 9250389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Augmentation of plasticity of the central auditory system by the basal forebrain and/or somatosensory cortex.
    Ma X; Suga N
    J Neurophysiol; 2003 Jan; 89(1):90-103. PubMed ID: 12522162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and plasticity of the inhibitory neocortical circuitry with an emphasis on the rodent barrel field cortex: a review.
    Micheva KD; Beaulieu C
    Can J Physiol Pharmacol; 1997 May; 75(5):470-8. PubMed ID: 9250380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cholinergic synaptic potentials in the supragranular layers of auditory cortex.
    Bandrowski AE; Moore SL; Ashe JH
    Synapse; 2001 Aug; 41(2):118-30. PubMed ID: 11400178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential control of cortical activity by the basal forebrain in rats: a role for both cholinergic and inhibitory influences.
    Jiménez-Capdeville ME; Dykes RW; Myasnikov AA
    J Comp Neurol; 1997 Apr; 381(1):53-67. PubMed ID: 9087419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhythmically discharging basal forebrain units comprise cholinergic, GABAergic, and putative glutamatergic cells.
    Manns ID; Alonso A; Jones BE
    J Neurophysiol; 2003 Feb; 89(2):1057-66. PubMed ID: 12574480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of nicotinic and muscarinic receptors in the endogenous cholinergic modulation of the balance between excitation and inhibition in the young rat visual cortex.
    Lucas-Meunier E; Monier C; Amar M; Baux G; Frégnac Y; Fossier P
    Cereb Cortex; 2009 Oct; 19(10):2411-27. PubMed ID: 19176636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pentobarbital enhances gamma-aminobutyric acid-mediated excitation without altering synaptic plasticity in rat hippocampus.
    Archer DP; Nguyen KQ; Samanani N; Roth SH
    Anesth Analg; 2007 Apr; 104(4):840-6. PubMed ID: 17377091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specific subtypes of cortical GABA interneurons contribute to the neurovascular coupling response to basal forebrain stimulation.
    Kocharyan A; Fernandes P; Tong XK; Vaucher E; Hamel E
    J Cereb Blood Flow Metab; 2008 Feb; 28(2):221-31. PubMed ID: 17895909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term plasticity of intrinsic excitability: learning rules and mechanisms.
    Daoudal G; Debanne D
    Learn Mem; 2003; 10(6):456-65. PubMed ID: 14657257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Input-selective potentiation and rebalancing of primary sensory cortex afferents by endogenous acetylcholine.
    Kuo MC; Rasmusson DD; Dringenberg HC
    Neuroscience; 2009 Sep; 163(1):430-41. PubMed ID: 19531370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular mechanisms preventing sustained activation of cortex during subcortical high-frequency stimulation.
    Iremonger KJ; Anderson TR; Hu B; Kiss ZH
    J Neurophysiol; 2006 Aug; 96(2):613-21. PubMed ID: 16554516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short-term plasticity in primary somatosensory cortex of the rat after hindlimb suspension.
    Langlet C; Canu MH; Picquet F; Falempin M
    J Gravit Physiol; 1999 Jul; 6(1):P59-60. PubMed ID: 11543027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is there a thalamic component to experience-dependent cortical plasticity?
    Fox K; Wallace H; Glazewski S
    Philos Trans R Soc Lond B Biol Sci; 2002 Dec; 357(1428):1709-15. PubMed ID: 12626005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cortical network reorganization guided by sensory input features.
    Kilgard MP; Pandya PK; Engineer ND; Moucha R
    Biol Cybern; 2002 Dec; 87(5-6):333-43. PubMed ID: 12461624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective cholinergic immunolesioning affects synaptic plasticity in developing visual cortex.
    Kuczewski N; Aztiria E; Leanza G; Domenici L
    Eur J Neurosci; 2005 Apr; 21(7):1807-14. PubMed ID: 15869476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of learning-induced cellular modifications in the cortex.
    Barkai E
    Biol Cybern; 2005 Jun; 92(6):360-6. PubMed ID: 15906082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Basal forebrain cholinergic system is involved in rapid nerve growth factor (NGF)-induced plasticity in the barrel cortex of adult rats.
    Prakash N; Cohen-Cory S; Penschuck S; Frostig RD
    J Neurophysiol; 2004 Jan; 91(1):424-37. PubMed ID: 14507983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological memory in primary auditory cortex: characteristics and mechanisms.
    Weinberger NM
    Neurobiol Learn Mem; 1998; 70(1-2):226-51. PubMed ID: 9753599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetric spike-timing dependent plasticity of striatal nitric oxide-synthase interneurons.
    Fino E; Paille V; Deniau JM; Venance L
    Neuroscience; 2009 Jun; 160(4):744-54. PubMed ID: 19303912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.