BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 9250721)

  • 1. Increased cartilage and bone formation in spontaneously hypercholesterolemic rats.
    Funaba M; Murata T; Murata E; Abe M; Takahashi M; Torii K
    Life Sci; 1997; 61(6):645-52. PubMed ID: 9250721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppressed bone induction by follistatin in spontaneously hypercholesterolemic rat bone.
    Funaba M; Murata T; Murata E; Ogawa K; Abe M; Takahashi M; Torii K
    Life Sci; 1997; 61(6):653-8. PubMed ID: 9250722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of matrix-induced osteogenesis in rat calvarial bone defects: I. Differences in the cellular response to demineralized bone matrix implanted in calvarial defects and in subcutaneous sites.
    Wang J; Glimcher MJ
    Calcif Tissue Int; 1999 Aug; 65(2):156-65. PubMed ID: 10430651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of aging on bone formation in rats: biochemical and histological evidence for decreased bone formation capacity.
    Nishimoto SK; Chang CH; Gendler E; Stryker WF; Nimni ME
    Calcif Tissue Int; 1985 Dec; 37(6):617-24. PubMed ID: 3937585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of lathyritic drugs and lathyritic demineralized bone matrix on induced and sustained osteogenesis.
    Di Cesare PE; Nimni ME; Yazdi M; Cheung DT
    J Orthop Res; 1994 May; 12(3):395-402. PubMed ID: 8207593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dystrophic calcification and mineralization during bone induction: biochemical differences.
    Nimni ME
    Nihon Seikeigeka Gakkai Zasshi; 1989 May; 63(5):630-42. PubMed ID: 2794638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteoinductivity of demineralized bone matrix in immunocompromised mice and rats is decreased by ovariectomy and restored by estrogen replacement.
    McMillan J; Kinney RC; Ranly DM; Fatehi-Sedeh S; Schwartz Z; Boyan BD
    Bone; 2007 Jan; 40(1):111-21. PubMed ID: 16973427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of short-term aluminum exposure on demineralized bone matrix induced bone formation.
    Severson AR; Haut CF; Firling CE; Huntley TE
    Arch Toxicol; 1992; 66(10):706-12. PubMed ID: 1290403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunosuppression with FK506 increases bone induction in demineralized isogeneic and xenogeneic bone matrix in the rat.
    Voggenreiter G; Assenmacher S; Kreuzfelder E; Wolf M; Kim MR; Nast-Kolb D; Schade FU
    J Bone Miner Res; 2000 Sep; 15(9):1825-34. PubMed ID: 10977002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ectopic bone formation is enhanced in senescent animals implanted with embryonic cells.
    Nimni ME; Bernick S; Ertl D; Nishimoto SK; Paule W; Strates BS; Villaneuva J
    Clin Orthop Relat Res; 1988 Sep; (234):255-66. PubMed ID: 3044663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo analysis of the half-life of the osteoinductive potential of demineralized bone matrix using diffusion chambers.
    Landesman R; Reddi AH
    Calcif Tissue Int; 1989 Dec; 45(6):348-53. PubMed ID: 2509025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of irradiation on the osteoinductive potential of demineralized bone matrix.
    Wientroub S; Reddi AH
    Calcif Tissue Int; 1988 Apr; 42(4):255-60. PubMed ID: 3135091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of high protein diets on cartilage and bone formation in rats.
    Weiss RE; Gorn A; Dux S; Nimni ME
    J Nutr; 1981 May; 111(5):804-16. PubMed ID: 7229730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The matrix of endochondral bone differs from the matrix of intramembranous bone.
    Scott CK; Hightower JA
    Calcif Tissue Int; 1991 Nov; 49(5):349-54. PubMed ID: 1723650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quantitative assessment of osteoinductivity of human demineralized bone matrix.
    Zhang M; Powers RM; Wolfinbarger L
    J Periodontol; 1997 Nov; 68(11):1076-84. PubMed ID: 9407400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Follistatin and activin in bone: expression and localization during endochondral bone development.
    Funaba M; Ogawa K; Murata T; Fujimura H; Murata E; Abe M; Takahashi M; Torii K
    Endocrinology; 1996 Oct; 137(10):4250-9. PubMed ID: 8828484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of trabecular demineralized bone in combination with perichondrium in the generation of cartilage grafts.
    van Osch GJ; ten Koppel PG; van der Veen SW; Poppe P; Burger EH; Verwoerd-Verhoef HL
    Biomaterials; 1999 Feb; 20(3):233-40. PubMed ID: 10030600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterotopic new bone formation causes resorption of the inductive bone matrix.
    Nilsson OS; Persson PE; Ekelund A
    Clin Orthop Relat Res; 1990 Aug; (257):280-5. PubMed ID: 2379365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influences of casein phosphopeptides on metabolism of ectopic bone induced by decalcified bone matrix implantation in rats.
    Matsui T; Yano H; Awano T; Harumoto T; Saito Y
    J Nutr Sci Vitaminol (Tokyo); 1994 Apr; 40(2):137-45. PubMed ID: 7931722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increase in tartrate-resistant acid phosphatase of bone at the early stage of ascorbic acid deficiency in the ascorbate-requiring Osteogenic Disorder Shionogi (ODS) rat.
    Goto A; Tsukamoto I
    Calcif Tissue Int; 2003 Aug; 73(2):180-5. PubMed ID: 14565600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.