These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 925091)
1. Motility occurring in association with the surface of the Chlamydomonas flagellum. Bloodgood RA J Cell Biol; 1977 Dec; 75(3):983-9. PubMed ID: 925091 [TBL] [Abstract][Full Text] [Related]
2. A motility in the eukaryotic flagellum unrelated to flagellar beating. Kozminski KG; Johnson KA; Forscher P; Rosenbaum JL Proc Natl Acad Sci U S A; 1993 Jun; 90(12):5519-23. PubMed ID: 8516294 [TBL] [Abstract][Full Text] [Related]
7. Membrane-membrane and membrane-ligand interactions in Chlamydomonas mating. Goodenough UW; Adair WS; Caligor E; Forest CL; Hoffman JL; Mesland DA; Spath S Soc Gen Physiol Ser; 1980; 34():131-52. PubMed ID: 7384832 [TBL] [Abstract][Full Text] [Related]
8. Flagellar microtubule dynamics in Chlamydomonas: cytochalasin D induces periods of microtubule shortening and elongation; and colchicine induces disassembly of the distal, but not proximal, half of the flagellum. Dentler WL; Adams C J Cell Biol; 1992 Jun; 117(6):1289-98. PubMed ID: 1607390 [TBL] [Abstract][Full Text] [Related]
9. Intraflagellar transport (IFT) during assembly and disassembly of Chlamydomonas flagella. Dentler W J Cell Biol; 2005 Aug; 170(4):649-59. PubMed ID: 16103230 [TBL] [Abstract][Full Text] [Related]
10. Dynamic properties of the flagellar surface. Bloodgood RA Symp Soc Exp Biol; 1982; 35():353-80. PubMed ID: 6764044 [No Abstract] [Full Text] [Related]
11. Analysis of force generation during flagellar assembly through optical trapping of free-swimming Chlamydomonas reinhardtii. McCord RP; Yukich JN; Bernd KK Cell Motil Cytoskeleton; 2005 Jul; 61(3):137-44. PubMed ID: 15887297 [TBL] [Abstract][Full Text] [Related]
12. The Chlamydomonas kinesin-like protein FLA10 is involved in motility associated with the flagellar membrane. Kozminski KG; Beech PL; Rosenbaum JL J Cell Biol; 1995 Dec; 131(6 Pt 1):1517-27. PubMed ID: 8522608 [TBL] [Abstract][Full Text] [Related]
14. Intrinsic difference in beat frequency between the two flagella of Chlamydomonas reinhardtii. Kamiya R; Hasegawa E Exp Cell Res; 1987 Nov; 173(1):299-304. PubMed ID: 3678383 [TBL] [Abstract][Full Text] [Related]
15. Flagellar waveform and rotational orientation in a Chlamydomonas mutant lacking normal striated fibers. Hoops HJ; Wright RL; Jarvik JW; Witman GB J Cell Biol; 1984 Mar; 98(3):818-24. PubMed ID: 6699086 [TBL] [Abstract][Full Text] [Related]
17. Bending patterns of chlamydomonas flagella I. Wild-type bending patterns. Brokaw CJ; Luck DJ Cell Motil; 1983; 3(2):131-50. PubMed ID: 6883467 [TBL] [Abstract][Full Text] [Related]
18. Polarity of flagellar assembly in Chlamydomonas. Johnson KA; Rosenbaum JL J Cell Biol; 1992 Dec; 119(6):1605-11. PubMed ID: 1281816 [TBL] [Abstract][Full Text] [Related]
19. Coordinated beating of algal flagella is mediated by basal coupling. Wan KY; Goldstein RE Proc Natl Acad Sci U S A; 2016 May; 113(20):E2784-93. PubMed ID: 27140605 [TBL] [Abstract][Full Text] [Related]
20. Exploring the function of inner and outer dynein arms with Chlamydomonas mutants. Kamiya R Cell Motil Cytoskeleton; 1995; 32(2):98-102. PubMed ID: 8681402 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]