These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 925091)
21. Evidence for axonemal distortion during the flagellar beat of Chlamydomonas. Lindemann CB; Mitchell DR Cell Motil Cytoskeleton; 2007 Aug; 64(8):580-9. PubMed ID: 17443716 [TBL] [Abstract][Full Text] [Related]
22. Use of a novel Chlamydomonas mutant to demonstrate that flagellar glycoprotein movements are necessary for the expression of gliding motility. Bloodgood RA; Salomonsky NL Cell Motil Cytoskeleton; 1989; 13(1):1-8. PubMed ID: 2731235 [TBL] [Abstract][Full Text] [Related]
23. Gliding motility and the dynamics of flagellar membrane glycoproteins in Chlamydomonas reinhardtii. Bloodgood RA J Protozool; 1988 Nov; 35(4):552-8. PubMed ID: 3058950 [No Abstract] [Full Text] [Related]
24. High-resolution imaging of flagella. Kozminski KG Methods Cell Biol; 1995; 47():263-71. PubMed ID: 7476498 [No Abstract] [Full Text] [Related]
26. Temperature-sensitive mutations affecting flagellar assembly and function in Chlamydomonas reinhardtii. Huang B; Rifkin MR; Luck DJ J Cell Biol; 1977 Jan; 72(1):67-85. PubMed ID: 830657 [TBL] [Abstract][Full Text] [Related]
27. Mating in Chlamydomonas: a system for the study of specific cell adhesion. II. A radioactive flagella-binding assay for quantitation of adhesion. Snell WJ J Cell Biol; 1976 Jan; 68(1):70-9. PubMed ID: 1245546 [TBL] [Abstract][Full Text] [Related]
28. Release of Sticky Glycoproteins from Chlamydomonas Flagella During Microsphere Translocation on the Surface Membrane. Kamiya R; Shiba K; Inaba K; Kato-Minoura T Zoolog Sci; 2018 Aug; 35(4):299-305. PubMed ID: 30079834 [TBL] [Abstract][Full Text] [Related]
29. Structure of the Chlamydomonas agglutinin and related flagellar surface proteins in vitro and in situ. Goodenough UW; Adair WS; Collin-Osdoby P; Heuser JE J Cell Biol; 1985 Sep; 101(3):924-41. PubMed ID: 4030899 [TBL] [Abstract][Full Text] [Related]
30. Beat frequency difference between the two flagella of Chlamydomonas depends on the attachment site of outer dynein arms on the outer-doublet microtubules. Takada S; Kamiya R Cell Motil Cytoskeleton; 1997; 36(1):68-75. PubMed ID: 8986378 [TBL] [Abstract][Full Text] [Related]
31. Gametic differentiation in Chlamydomonas reinhardtii. II. Flagellar membranes and the agglutination reaction. Bergman K; Goodenough UW; Goodenough DA; Jawitz J; Martin H J Cell Biol; 1975 Dec; 67(3):606-22. PubMed ID: 1202016 [TBL] [Abstract][Full Text] [Related]
32. Evidence for role of flagella as sensory transducers in mating of Chlamydomonas reinhardi. Solter KM; Gibor A Nature; 1977 Feb; 265(5593):444-5. PubMed ID: 834294 [No Abstract] [Full Text] [Related]
33. Genetic and biochemical dissection of the eucaryotic flagellum. Luck DJ J Cell Biol; 1984 Mar; 98(3):789-94. PubMed ID: 6230366 [TBL] [Abstract][Full Text] [Related]
34. A regulatory mechanism for flagellar function is revealed by suppressor analysis in Chlamydomonas. Luck DJ; Huang B; Brokaw CJ Prog Clin Biol Res; 1982; 80():159-64. PubMed ID: 6212937 [No Abstract] [Full Text] [Related]
35. The photocontrol of movement of Chlamydomonas. Nultsch W Symp Soc Exp Biol; 1983; 36():521-39. PubMed ID: 6399789 [No Abstract] [Full Text] [Related]
36. cAMP controls the balance of the propulsive forces generated by the two flagella of Chlamydomonas. Saegusa Y; Yoshimura K Cytoskeleton (Hoboken); 2015 Aug; 72(8):412-21. PubMed ID: 26257199 [TBL] [Abstract][Full Text] [Related]
37. Redistribution and shedding of flagellar membrane glycoproteins visualized using an anti-carbohydrate monoclonal antibody and concanavalin A. Bloodgood RA; Woodward MP; Salomonsky NL J Cell Biol; 1986 May; 102(5):1797-812. PubMed ID: 3009491 [TBL] [Abstract][Full Text] [Related]