BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 9250986)

  • 1. Use of 13C nuclear magnetic resonance to evaluate metabolic flux through folate one-carbon pools in Saccharomyces cerevisiae.
    Appling DR; Kastanos E; Pasternack LB; Woldman YY
    Methods Enzymol; 1997; 281():218-31. PubMed ID: 9250986
    [No Abstract]   [Full Text] [Related]  

  • 2. 13C NMR analysis of intercompartmental flow of one-carbon units into choline and purines in Saccharomyces cerevisiae.
    Pasternack LB; Laude DA; Appling DR
    Biochemistry; 1994 Jan; 33(1):74-82. PubMed ID: 8286365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 13C NMR detection of folate-mediated serine and glycine synthesis in vivo in Saccharomyces cerevisiae.
    Pasternack LB; Laude DA; Appling DR
    Biochemistry; 1992 Sep; 31(37):8713-9. PubMed ID: 1390656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of mitochondrial and cytoplasmic serine hydroxymethyltransferase isozymes in de novo purine synthesis in Saccharomyces cerevisiae.
    Kastanos EK; Woldman YY; Appling DR
    Biochemistry; 1997 Dec; 36(48):14956-64. PubMed ID: 9398220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Whole-cell detection by 13C NMR of metabolic flux through the C1-tetrahydrofolate synthase/serine hydroxymethyltransferase enzyme system and effect of antifolate exposure in Saccharomyces cerevisiae.
    Pasternack LB; Laude DA; Appling DR
    Biochemistry; 1994 Jun; 33(23):7166-73. PubMed ID: 8003483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 13C NMR analysis of the use of alternative donors to the tetrahydrofolate-dependent one-carbon pools in Saccharomyces cerevisiae.
    Pasternack LB; Littlepage LE; Laude DA; Appling DR
    Arch Biochem Biophys; 1996 Feb; 326(1):158-65. PubMed ID: 8579365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Serine hydroxymethyltransferase: a key player connecting purine, folate and methionine metabolism in Saccharomyces cerevisiae.
    Saint-Marc C; Hürlimann HC; Daignan-Fornier B; Pinson B
    Curr Genet; 2015 Nov; 61(4):633-40. PubMed ID: 25893566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 13C enrichment of carbons 2 and 8 of purine by folate-dependent reactions after [13C]formate and [2-13C]glycine dosing in adult humans.
    Baggott JE; Gorman GS; Tamura T
    Metabolism; 2007 May; 56(5):708-15. PubMed ID: 17445548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of cytosolic serine hydroxymethyltransferase in one-carbon metabolism in Neurospora crassa.
    Jeong SS; Schirch V
    Arch Biochem Biophys; 1996 Nov; 335(2):333-41. PubMed ID: 8914930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A general method for determining the contribution of split pathways in metabolite production in the yeast Saccharomyces cerevisiae.
    Woldman Y; Appling DR
    Metab Eng; 2002 Apr; 4(2):170-81. PubMed ID: 12009796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Folate activity of human lymphocytes determined by measurement of serine synthesis.
    Ellegaard J; Esmann V
    Scand J Clin Lab Invest; 1973 Jan; 31(1):9-19. PubMed ID: 4687782
    [No Abstract]   [Full Text] [Related]  

  • 12. The role of serine hydroxymethyltransferase isozymes in one-carbon metabolism in MCF-7 cells as determined by (13)C NMR.
    Fu TF; Rife JP; Schirch V
    Arch Biochem Biophys; 2001 Sep; 393(1):42-50. PubMed ID: 11516159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. "Active" one-carbon generation in Saccharomyces cerevisiae.
    Ogur M; Liu TN; Cheung I; Paulavicius I; Wales W; Mehnert D; Blaise D
    J Bacteriol; 1977 Feb; 129(2):926-33. PubMed ID: 320197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversal of Cytosolic One-Carbon Flux Compensates for Loss of the Mitochondrial Folate Pathway.
    Ducker GS; Chen L; Morscher RJ; Ghergurovich JM; Esposito M; Teng X; Kang Y; Rabinowitz JD
    Cell Metab; 2016 Jun; 23(6):1140-1153. PubMed ID: 27211901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of serine, folate and glycine metabolism to the ATP, NADPH and purine requirements of cancer cells.
    Tedeschi PM; Markert EK; Gounder M; Lin H; Dvorzhinski D; Dolfi SC; Chan LL; Qiu J; DiPaola RS; Hirshfield KM; Boros LG; Bertino JR; Oltvai ZN; Vazquez A
    Cell Death Dis; 2013 Oct; 4(10):e877. PubMed ID: 24157871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthesis of uric acid in the tunicate, Molgula manhattensis, with a general scheme for the function of stored purines in animals.
    Nolfi JR
    Comp Biochem Physiol; 1970 Aug; 35(4):827-42. PubMed ID: 4916384
    [No Abstract]   [Full Text] [Related]  

  • 17. The regulation of the degradation of methionine and of the one-carbon units derived from histidine, serine and glycine.
    Krebs HA; Hems R
    Adv Enzyme Regul; 1976; 14():493-513. PubMed ID: 970273
    [No Abstract]   [Full Text] [Related]  

  • 18. Sources of one-carbon units in the folate pathway of Escherichia coli.
    Dev IK; Harvey RJ
    J Biol Chem; 1982 Feb; 257(4):1980-6. PubMed ID: 6799517
    [No Abstract]   [Full Text] [Related]  

  • 19. Aspects of one-carbon folate cycling related to fluoropyrimidine and antifolate therapy.
    Spears CP; Carlsson G; Muggia FM; Jaresko G; Gustavsson BG
    Cancer Treat Res; 1995; 78():115-34. PubMed ID: 8595140
    [No Abstract]   [Full Text] [Related]  

  • 20. Defect of incorporation of glycine-1- 14 C into urinary uric acid in formiminotransferase deficiency syndrome.
    Arakawa T; Yoshida T; Konno T; Honda Y
    Tohoku J Exp Med; 1972 Mar; 106(3):213-8. PubMed ID: 5038586
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.