These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 9250986)
1. Use of 13C nuclear magnetic resonance to evaluate metabolic flux through folate one-carbon pools in Saccharomyces cerevisiae. Appling DR; Kastanos E; Pasternack LB; Woldman YY Methods Enzymol; 1997; 281():218-31. PubMed ID: 9250986 [No Abstract] [Full Text] [Related]
2. 13C NMR analysis of intercompartmental flow of one-carbon units into choline and purines in Saccharomyces cerevisiae. Pasternack LB; Laude DA; Appling DR Biochemistry; 1994 Jan; 33(1):74-82. PubMed ID: 8286365 [TBL] [Abstract][Full Text] [Related]
3. 13C NMR detection of folate-mediated serine and glycine synthesis in vivo in Saccharomyces cerevisiae. Pasternack LB; Laude DA; Appling DR Biochemistry; 1992 Sep; 31(37):8713-9. PubMed ID: 1390656 [TBL] [Abstract][Full Text] [Related]
4. Role of mitochondrial and cytoplasmic serine hydroxymethyltransferase isozymes in de novo purine synthesis in Saccharomyces cerevisiae. Kastanos EK; Woldman YY; Appling DR Biochemistry; 1997 Dec; 36(48):14956-64. PubMed ID: 9398220 [TBL] [Abstract][Full Text] [Related]
5. Whole-cell detection by 13C NMR of metabolic flux through the C1-tetrahydrofolate synthase/serine hydroxymethyltransferase enzyme system and effect of antifolate exposure in Saccharomyces cerevisiae. Pasternack LB; Laude DA; Appling DR Biochemistry; 1994 Jun; 33(23):7166-73. PubMed ID: 8003483 [TBL] [Abstract][Full Text] [Related]
6. 13C NMR analysis of the use of alternative donors to the tetrahydrofolate-dependent one-carbon pools in Saccharomyces cerevisiae. Pasternack LB; Littlepage LE; Laude DA; Appling DR Arch Biochem Biophys; 1996 Feb; 326(1):158-65. PubMed ID: 8579365 [TBL] [Abstract][Full Text] [Related]
7. Serine hydroxymethyltransferase: a key player connecting purine, folate and methionine metabolism in Saccharomyces cerevisiae. Saint-Marc C; Hürlimann HC; Daignan-Fornier B; Pinson B Curr Genet; 2015 Nov; 61(4):633-40. PubMed ID: 25893566 [TBL] [Abstract][Full Text] [Related]
8. 13C enrichment of carbons 2 and 8 of purine by folate-dependent reactions after [13C]formate and [2-13C]glycine dosing in adult humans. Baggott JE; Gorman GS; Tamura T Metabolism; 2007 May; 56(5):708-15. PubMed ID: 17445548 [TBL] [Abstract][Full Text] [Related]
9. Role of cytosolic serine hydroxymethyltransferase in one-carbon metabolism in Neurospora crassa. Jeong SS; Schirch V Arch Biochem Biophys; 1996 Nov; 335(2):333-41. PubMed ID: 8914930 [TBL] [Abstract][Full Text] [Related]
10. A general method for determining the contribution of split pathways in metabolite production in the yeast Saccharomyces cerevisiae. Woldman Y; Appling DR Metab Eng; 2002 Apr; 4(2):170-81. PubMed ID: 12009796 [TBL] [Abstract][Full Text] [Related]
11. Folate activity of human lymphocytes determined by measurement of serine synthesis. Ellegaard J; Esmann V Scand J Clin Lab Invest; 1973 Jan; 31(1):9-19. PubMed ID: 4687782 [No Abstract] [Full Text] [Related]
12. The role of serine hydroxymethyltransferase isozymes in one-carbon metabolism in MCF-7 cells as determined by (13)C NMR. Fu TF; Rife JP; Schirch V Arch Biochem Biophys; 2001 Sep; 393(1):42-50. PubMed ID: 11516159 [TBL] [Abstract][Full Text] [Related]
13. "Active" one-carbon generation in Saccharomyces cerevisiae. Ogur M; Liu TN; Cheung I; Paulavicius I; Wales W; Mehnert D; Blaise D J Bacteriol; 1977 Feb; 129(2):926-33. PubMed ID: 320197 [TBL] [Abstract][Full Text] [Related]
14. Reversal of Cytosolic One-Carbon Flux Compensates for Loss of the Mitochondrial Folate Pathway. Ducker GS; Chen L; Morscher RJ; Ghergurovich JM; Esposito M; Teng X; Kang Y; Rabinowitz JD Cell Metab; 2016 Jun; 23(6):1140-1153. PubMed ID: 27211901 [TBL] [Abstract][Full Text] [Related]
15. Contribution of serine, folate and glycine metabolism to the ATP, NADPH and purine requirements of cancer cells. Tedeschi PM; Markert EK; Gounder M; Lin H; Dvorzhinski D; Dolfi SC; Chan LL; Qiu J; DiPaola RS; Hirshfield KM; Boros LG; Bertino JR; Oltvai ZN; Vazquez A Cell Death Dis; 2013 Oct; 4(10):e877. PubMed ID: 24157871 [TBL] [Abstract][Full Text] [Related]
16. Biosynthesis of uric acid in the tunicate, Molgula manhattensis, with a general scheme for the function of stored purines in animals. Nolfi JR Comp Biochem Physiol; 1970 Aug; 35(4):827-42. PubMed ID: 4916384 [No Abstract] [Full Text] [Related]
17. The regulation of the degradation of methionine and of the one-carbon units derived from histidine, serine and glycine. Krebs HA; Hems R Adv Enzyme Regul; 1976; 14():493-513. PubMed ID: 970273 [No Abstract] [Full Text] [Related]
18. Sources of one-carbon units in the folate pathway of Escherichia coli. Dev IK; Harvey RJ J Biol Chem; 1982 Feb; 257(4):1980-6. PubMed ID: 6799517 [No Abstract] [Full Text] [Related]
19. Aspects of one-carbon folate cycling related to fluoropyrimidine and antifolate therapy. Spears CP; Carlsson G; Muggia FM; Jaresko G; Gustavsson BG Cancer Treat Res; 1995; 78():115-34. PubMed ID: 8595140 [No Abstract] [Full Text] [Related]
20. Defect of incorporation of glycine-1- 14 C into urinary uric acid in formiminotransferase deficiency syndrome. Arakawa T; Yoshida T; Konno T; Honda Y Tohoku J Exp Med; 1972 Mar; 106(3):213-8. PubMed ID: 5038586 [No Abstract] [Full Text] [Related] [Next] [New Search]