BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 9250995)

  • 1. Continuous coupled assay for 5-aminolevulinate synthase.
    Shoolingin-Jordan PM; LeLean JE; Lloyd AJ
    Methods Enzymol; 1997; 281():309-16. PubMed ID: 9250995
    [No Abstract]   [Full Text] [Related]  

  • 2. A continuous spectrophotometric assay for 5-aminolevulinate synthase that utilizes substrate cycling.
    Hunter GA; Ferreira GC
    Anal Biochem; 1995 Apr; 226(2):221-4. PubMed ID: 7793621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of 5-aminolevulinic acid by an Escherichia coli aminolevulinate dehydratase mutant that overproduces Rhodobacter sphaeroides aminolevulinate synthase.
    Xie L; Eiteman MA; Altman E
    Biotechnol Lett; 2003 Oct; 25(20):1751-5. PubMed ID: 14626421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 5-Aminolevulinic-acid synthetase of Rhodopseudomonas spheroides Y. Kinetic mechanism and inhibition by ATP.
    Fanica-Gaignier M; Clement-Metral J
    Eur J Biochem; 1973 Dec; 40(1):19-24. PubMed ID: 4359141
    [No Abstract]   [Full Text] [Related]  

  • 5. Studies on delta-aminolevulinic acid synthase of Rhodopseudomonas spheroides. Reversibility of the reaction, kinetic, spectral, and other studies related to the mechanism of action.
    Nandi DL
    J Biol Chem; 1978 Dec; 253(24):8872-7. PubMed ID: 309883
    [No Abstract]   [Full Text] [Related]  

  • 6. Characterization of the rhodobacter sphaeroides 5-aminolaevulinic acid synthase isoenzymes, HemA and HemT, isolated from recombinant Escherichia coli.
    Bolt EL; Kryszak L; Zeilstra-Ryalls J; Shoolingin-Jordan PM; Warren MJ
    Eur J Biochem; 1999 Oct; 265(1):290-9. PubMed ID: 10491185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of mammalian 5-aminolevulinate synthase in Escherichia coli. Overproduction, purification, and characterization.
    Ferreira GC; Dailey HA
    J Biol Chem; 1993 Jan; 268(1):584-90. PubMed ID: 8416963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 5-Aminolevulinate production by Escherichia coli containing the Rhodobacter sphaeroides hemA gene.
    van der Werf MJ; Zeikus JG
    Appl Environ Microbiol; 1996 Oct; 62(10):3560-6. PubMed ID: 8837411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient state kinetic investigation of 5-aminolevulinate synthase reaction mechanism.
    Zhang J; Ferreira GC
    J Biol Chem; 2002 Nov; 277(47):44660-9. PubMed ID: 12191993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Partial purification of an enzyme which is required for the conversion of the inactive form to the active form of -aminolevulinate synthetase from Rhodopseudomonas spheroides.
    Tuboi S; Hayasaka S
    J Biochem; 1972 Jul; 72(1):219-22. PubMed ID: 4538402
    [No Abstract]   [Full Text] [Related]  

  • 11. Arg-85 and Thr-430 in murine 5-aminolevulinate synthase coordinate acyl-CoA-binding and contribute to substrate specificity.
    Lendrihas T; Zhang J; Hunter GA; Ferreira GC
    Protein Sci; 2009 Sep; 18(9):1847-59. PubMed ID: 19562746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression and purification of mammalian 5-aminolevulinate synthase.
    Dailey HA; Dailey TA
    Methods Enzymol; 1997; 281():336-40. PubMed ID: 9250998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and functional characterization of thermostable 5-aminolevulinic acid synthases.
    Meng Q; Zhang Y; Ma C; Ma H; Zhao X; Chen T
    Biotechnol Lett; 2015 Nov; 37(11):2247-53. PubMed ID: 26296612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis of uroporphyrinogens. Interaction among 2-(aminomethyl)bilanes and the enzymatic system.
    Sburlati A; Frydman RB; Valasinas A; Rosé S; Priestap HA; Frydman B
    Biochemistry; 1983 Aug; 22(17):4006-13. PubMed ID: 6604545
    [No Abstract]   [Full Text] [Related]  

  • 15. Metabolic engineering to improve 5-aminolevulinic acid production.
    Kang Z; Wang Y; Wang Q; Qi Q
    Bioeng Bugs; 2011; 2(6):342-5. PubMed ID: 22008939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interconversion between the active and inactive forms of delta-aminolevulinate synthetase in Rhodopseudomonas spheroides.
    Tuboi S; Hayasaka S
    Enzyme; 1973; 16(1):86-93. PubMed ID: 4545442
    [No Abstract]   [Full Text] [Related]  

  • 17. Mechanism of coupled electron and group transfer in Escherichia coli pyruvate dehydrogenase.
    Frey PA
    Ann N Y Acad Sci; 1982; 378():250-64. PubMed ID: 6805383
    [No Abstract]   [Full Text] [Related]  

  • 18. 5-Aminolevulinic acid production from inexpensive glucose by engineering the C4 pathway in Escherichia coli.
    Ding W; Weng H; Du G; Chen J; Kang Z
    J Ind Microbiol Biotechnol; 2017 Aug; 44(8):1127-1135. PubMed ID: 28382525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A partial reaction of delta-aminolaevulinate synthetase from Rhodopseudomonas spheroides.
    Laghai A; Jordan PM
    Biochem Soc Trans; 1976; 4(1):52-3. PubMed ID: 1087256
    [No Abstract]   [Full Text] [Related]  

  • 20. High-level soluble expression of the hemA gene from Rhodobacter capsulatus and comparative study of its enzymatic properties.
    Lou JW; Zhu L; Wu MB; Yang LR; Lin JP; Cen PL
    J Zhejiang Univ Sci B; 2014 May; 15(5):491-9. PubMed ID: 24793767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.