These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 9251209)

  • 21. Growth kinetics and cell morphology of Listeria monocytogenes Scott A as affected by temperature, NaCl, and EDTA.
    Zaika LL; Fanelli JS
    J Food Prot; 2003 Jul; 66(7):1208-15. PubMed ID: 12870754
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Resuscitation and growth kinetics of sub-lethally injured Listeria monocytogenes strains following fluorescence activated cell sorting (FACS).
    Sibanda T; Buys EM
    Food Res Int; 2017 Oct; 100(Pt 2):150-158. PubMed ID: 28888435
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microarray-based characterization of the Listeria monocytogenes cold regulon in log- and stationary-phase cells.
    Chan YC; Raengpradub S; Boor KJ; Wiedmann M
    Appl Environ Microbiol; 2007 Oct; 73(20):6484-98. PubMed ID: 17720827
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of growth temperature in freeze-thaw tolerance of Listeria spp.
    Azizoglu RO; Osborne J; Wilson S; Kathariou S
    Appl Environ Microbiol; 2009 Aug; 75(16):5315-20. PubMed ID: 19542335
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of growth temperature and strictly anaerobic recovery on the survival of Listeria monocytogenes during pasteurization.
    Knabel SJ; Walker HW; Hartman PA; Mendonca AF
    Appl Environ Microbiol; 1990 Feb; 56(2):370-6. PubMed ID: 2106284
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Osmotic stress leads to decreased intracellular pH of Listeria monocytogenes as determined by fluorescence ratio-imaging microscopy.
    Fang W; Siegumfeldt H; Budde BB; Jakobsen M
    Appl Environ Microbiol; 2004 May; 70(5):3176-9. PubMed ID: 15128587
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SigmaB-dependent and sigmaB-independent mechanisms contribute to transcription of Listeria monocytogenes cold stress genes during cold shock and cold growth.
    Chan YC; Boor KJ; Wiedmann M
    Appl Environ Microbiol; 2007 Oct; 73(19):6019-29. PubMed ID: 17675428
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Use of mild-heat treatment following high-pressure processing to prevent recovery of pressure-injured Listeria monocytogenes in milk.
    Koseki S; Mizuno Y; Yamamoto K
    Food Microbiol; 2008 Apr; 25(2):288-93. PubMed ID: 18206771
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of heat and cold shock proteins in Listeria by two-dimensional electrophoresis.
    Phan-Thanh L; Gormon T
    Electrophoresis; 1995 Mar; 16(3):444-50. PubMed ID: 7607179
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermal inactivation and sublethal injury kinetics of Salmonella enterica and Listeria monocytogenes in broth versus agar surface.
    Wang X; Devlieghere F; Geeraerd A; Uyttendaele M
    Int J Food Microbiol; 2017 Feb; 243():70-77. PubMed ID: 28011300
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recovery of heat-injured Listeria monocytogenes.
    Mackey BM; Boogard E; Hayes CM; Baranyi J
    Int J Food Microbiol; 1994 Jun; 22(4):227-37. PubMed ID: 7986674
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heat resistance and fatty acid composition of Listeria monocytogenes: effect of pH, acidulant, and growth temperature.
    Juneja VK; Foglia TA; Marmer BS
    J Food Prot; 1998 Jun; 61(6):683-7. PubMed ID: 9709249
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A proteomic analysis of the salt stress response of Listeria monocytogenes.
    Duché O; Trémoulet F; Namane A; Labadie J;
    FEMS Microbiol Lett; 2002 Oct; 215(2):183-8. PubMed ID: 12399033
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cold shock and its effect on ribosomes and thermal tolerance in Listeria monocytogenes.
    Bayles DO; Tunick MH; Foglia TA; Miller AJ
    Appl Environ Microbiol; 2000 Oct; 66(10):4351-5. PubMed ID: 11010881
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of modified atmospheric storage, lactic acid, and NaCl on survival of sublethally heat-injured Listeria monocytogenes.
    Williams RC; Golden DA
    Int J Food Microbiol; 2001 Mar; 64(3):379-86. PubMed ID: 11294361
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modelling the effect of the redox potential and pH of heating media on Listeria monocytogenes heat resistance.
    Ignatova M; Leguerinel I; Guilbot M; Prévost H; Guillou S
    J Appl Microbiol; 2008 Sep; 105(3):875-83. PubMed ID: 18410341
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predictive modeling for growth of non- and cold-adapted Listeria monocytogenes on fresh-cut cantaloupe at different storage temperatures.
    Hong YK; Yoon WB; Huang L; Yuk HG
    J Food Sci; 2014 Jun; 79(6):M1168-74. PubMed ID: 24754226
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of temperature history on the growth of Listeria monocytogenes Scott A at refrigeration temperatures.
    Buchanan RL; Klawitter LA
    Int J Food Microbiol; 1991 Feb; 12(2-3):235-45. PubMed ID: 1904762
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Catalase, superoxide dismutase, and hemolysin activities and heat susceptibility of Listeria monocytogenes after growth in media containing sodium chloride.
    Dallmier AW; Martin SE
    Appl Environ Microbiol; 1990 Sep; 56(9):2807-10. PubMed ID: 2125816
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermal inactivation of Listeria monocytogenes studied by differential scanning calorimetry.
    Anderson WA; Hedges ND; Jones MV; Cole MB
    J Gen Microbiol; 1991 Jun; 137(6):1419-24. PubMed ID: 1919516
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.