BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 92521)

  • 1. Macrophage oxygen-dependent antimicrobial activity. I. Susceptibility of Toxoplasma gondii to oxygen intermediates.
    Murray HW; Cohn ZA
    J Exp Med; 1979 Oct; 150(4):938-49. PubMed ID: 92521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macrophage oxygen-dependent antimicrobial activity. II. The role of oxygen intermediates.
    Murray HW; Juangbhanich CW; Nathan CF; Cohn ZA
    J Exp Med; 1979 Oct; 150(4):950-64. PubMed ID: 512587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Susceptibility of Eimeria bovis and Toxoplasma gondii to oxygen intermediates and a new mathematical model for parasite killing.
    Hughes HP; Boik RJ; Gerhardt SA; Speer CA
    J Parasitol; 1989 Aug; 75(4):489-97. PubMed ID: 2760759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macrophage oxygen-dependent antimicrobial activity. IV. Role of endogenous scavengers of oxygen intermediates.
    Murray HW; Nathan CF; Cohn ZA
    J Exp Med; 1980 Dec; 152(6):1610-24. PubMed ID: 7452149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Susceptibility of Leishmania to oxygen intermediates and killing by normal macrophages.
    Murray HW
    J Exp Med; 1981 May; 153(5):1302-15. PubMed ID: 7252418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Susceptibility of Trichophyton quinckeanum and Trichophyton rubrum to products of oxidative metabolism.
    Calderon RA; Shennan GI
    Immunology; 1987 Jul; 61(3):283-8. PubMed ID: 3610210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macrophage oxygen-dependent antimicrobial activity. III. Enhanced oxidative metabolism as an expression of macrophage activation.
    Murray HW; Cohn ZA
    J Exp Med; 1980 Dec; 152(6):1596-609. PubMed ID: 6256463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Susceptibility of Entamoeba histolytica to oxygen intermediates.
    Murray HW; Aley SB; Scott WA
    Mol Biochem Parasitol; 1981 Oct; 3(6):381-91. PubMed ID: 6272108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human mononuclear phagocyte antiprotozoal mechanisms: oxygen-dependent vs oxygen-independent activity against intracellular Toxoplasma gondii.
    Murray HW; Rubin BY; Carriero SM; Harris AM; Jaffee EA
    J Immunol; 1985 Mar; 134(3):1982-8. PubMed ID: 2981929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Damage to Candida albicans hyphae and pseudohyphae by the myeloperoxidase system and oxidative products of neutrophil metabolism in vitro.
    Diamond RD; Clark RA; Haudenschild CC
    J Clin Invest; 1980 Nov; 66(5):908-17. PubMed ID: 6253527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bactericidal activity of a superoxide anion-generating system. A model for the polymorphonuclear leukocyte.
    Rosen H; Klebanoff SJ
    J Exp Med; 1979 Jan; 149(1):27-39. PubMed ID: 216766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Singlet oxygen generation in the superoxide reaction.
    Mao Y; Zang L; Shi X
    Biochem Mol Biol Int; 1995 May; 36(1):227-32. PubMed ID: 7663419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth of Trypanosoma cruzi in a cloned macrophage cell line and in a variant defective in oxygen metabolism.
    Tanaka Y; Tanowitz H; Bloom BR
    Infect Immun; 1983 Sep; 41(3):1322-31. PubMed ID: 6350185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological defense mechanisms. Evidence for the participation of superoxide in bacterial killing by xanthine oxidase.
    Babior BM; Curnutte JT; Kipnes RS
    J Lab Clin Med; 1975 Feb; 85(2):235-44. PubMed ID: 1089740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition by superoxide dismutase and catalase of the damage of isolated Leishmania mexicana amazonensis by phenazine methosulfate.
    Nabi ZF; Rabinovitch M
    Mol Biochem Parasitol; 1984 Mar; 10(3):297-303. PubMed ID: 6328296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of reactive oxygen intermediate scavengers on the antitoxoplasmic activity of activated macrophages.
    Saito A; Igarashi I; Miyahara K; Venturini C; Claveria FG; Hirose T; Suzuki N; Ono K
    Parasitol Res; 1992; 78(1):28-31. PubMed ID: 1584743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Killing of human malaria parasites by macrophage secretory products.
    Wozencraft AO; Dockrell HM; Taverne J; Targett GA; Playfair JH
    Infect Immun; 1984 Feb; 43(2):664-9. PubMed ID: 6363296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role for endogenous and acquired peroxidase in the toxoplasmacidal activity of murine and human mononuclear phagocytes.
    Locksley RM; Wilson CB; Klebanoff SJ
    J Clin Invest; 1982 May; 69(5):1099-111. PubMed ID: 7068848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of myeloperoxidase in the microbicidal activity of polymorphonuclear leukocytes.
    Klebanoff SJ; Rosen H
    Ciba Found Symp; 1978 Jun 6-8; (65):263-84. PubMed ID: 225142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lymphokine activation of J774G8 cells and mouse peritoneal macrophages challenged with Toxoplasma gondii.
    Sibley LD; Krahenbuhl JL; Weidner E
    Infect Immun; 1985 Sep; 49(3):760-4. PubMed ID: 4030103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.