These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 9252248)
1. Acceleration of oxidative stress-induced endothelial cell death by nitric oxide synthase dysfunction accompanied with decrease in tetrahydrobiopterin content. Ishii M; Shimizu S; Yamamoto T; Momose K; Kuroiwa Y Life Sci; 1997; 61(7):739-47. PubMed ID: 9252248 [TBL] [Abstract][Full Text] [Related]
2. Protective effects of tetrahydrobiopterin against nitric oxide-induced endothelial cell death. Shimizu S; Ishii M; Kawakami Y; Momose K; Yamamoto T Life Sci; 1998; 63(18):1585-92. PubMed ID: 9806211 [TBL] [Abstract][Full Text] [Related]
3. Reduction by tetrahydrobiopterin of H2O2-induced endothelial cell injury. Ishii M; Shimizu S; Momose K; Yamamoto T Pharmacol Toxicol; 1998 Jun; 82(6):280-6. PubMed ID: 9677619 [TBL] [Abstract][Full Text] [Related]
4. SIN-1-induced cytotoxicity in cultured endothelial cells involves reactive oxygen species and nitric oxide: protective effect of sepiapterin. Ishii M; Shimizu S; Momose K; Yamamoto T J Cardiovasc Pharmacol; 1999 Feb; 33(2):295-300. PubMed ID: 10028940 [TBL] [Abstract][Full Text] [Related]
5. Tetrahydrobiopterin synthesis. An absolute requirement for cytokine-induced nitric oxide generation by vascular smooth muscle. Gross SS; Levi R J Biol Chem; 1992 Dec; 267(36):25722-9. PubMed ID: 1281471 [TBL] [Abstract][Full Text] [Related]
6. Lack of nitric oxide mediation of flow-dependent arteriolar dilation in type I diabetes is restored by sepiapterin. Bagi Z; Koller A J Vasc Res; 2003; 40(1):47-57. PubMed ID: 12644725 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of tetrahydrobiopterin synthesis reduces nitric oxide production by isolated glomeruli in immune complex glomerulonephritis. Bune AJ; Cook HT Exp Nephrol; 1996; 4(1):43-7. PubMed ID: 8788599 [TBL] [Abstract][Full Text] [Related]
8. Tetrahydrobiopterin and dysfunction of endothelial nitric oxide synthase in coronary arteries. Cosentino F; Katusić ZS Circulation; 1995 Jan; 91(1):139-44. PubMed ID: 7528647 [TBL] [Abstract][Full Text] [Related]
9. L-ascorbic acid potentiates endothelial nitric oxide synthesis via a chemical stabilization of tetrahydrobiopterin. Heller R; Unbehaun A; Schellenberg B; Mayer B; Werner-Felmayer G; Werner ER J Biol Chem; 2001 Jan; 276(1):40-7. PubMed ID: 11022034 [TBL] [Abstract][Full Text] [Related]
10. Presence of excess tetrahydrobiopterin during nitric oxide production from inducible nitric oxide synthase in LPS-treated rat aorta. Shimizu S; Ishii M; Kawakami Y; Kiuchi Y; Momose K; Yamamoto T Life Sci; 1999; 65(26):2769-79. PubMed ID: 10622266 [TBL] [Abstract][Full Text] [Related]
11. Acute inhibition of guanosine triphosphate cyclohydrolase 1 uncouples endothelial nitric oxide synthase and elevates blood pressure. Wang S; Xu J; Song P; Wu Y; Zhang J; Chul Choi H; Zou MH Hypertension; 2008 Sep; 52(3):484-90. PubMed ID: 18645049 [TBL] [Abstract][Full Text] [Related]
12. Pterins inhibit nitric oxide synthase activity in rat alveolar macrophages. Jorens PG; van Overveld FJ; Bult H; Vermeire PA; Herman AG Br J Pharmacol; 1992 Dec; 107(4):1088-91. PubMed ID: 1281717 [TBL] [Abstract][Full Text] [Related]
13. Hydrogen peroxide stimulates tetrahydrobiopterin synthesis through the induction of GTP-cyclohydrolase I and increases nitric oxide synthase activity in vascular endothelial cells. Shimizu S; Shiota K; Yamamoto S; Miyasaka Y; Ishii M; Watabe T; Nishida M; Mori Y; Yamamoto T; Kiuchi Y Free Radic Biol Med; 2003 May; 34(10):1343-52. PubMed ID: 12726922 [TBL] [Abstract][Full Text] [Related]
14. Carboxy-PTIO increases the tetrahydrobiopterin level in mouse brain microvascular endothelial cells. Shimizu S; Ishii M; Iwasaki M; Shiota K; Yamamoto T; Kiuchi Y Jpn J Pharmacol; 2001 Sep; 87(1):51-60. PubMed ID: 11676198 [TBL] [Abstract][Full Text] [Related]
15. Role of tetrahydrobiopterin availability in the regulation of nitric-oxide synthase expression in human mesangial cells. Saura M; Pérez-Sala D; Cañada FJ; Lamas S J Biol Chem; 1996 Jun; 271(24):14290-5. PubMed ID: 8662883 [TBL] [Abstract][Full Text] [Related]
16. Stimulation of nitric oxide synthase during oxidative endothelial cell injury. Shimizu S; Nomoto M; Naito S; Yamamoto T; Momose K Biochem Pharmacol; 1998 Jan; 55(1):77-83. PubMed ID: 9413933 [TBL] [Abstract][Full Text] [Related]
17. Tetrahydrobiopterin deficiency increases neuronal vulnerability to hypoxia. Delgado-Esteban M; Almeida A; Medina JM J Neurochem; 2002 Sep; 82(5):1148-59. PubMed ID: 12358762 [TBL] [Abstract][Full Text] [Related]
18. Cytokine-activated endothelial cells express an isotype of nitric oxide synthase which is tetrahydrobiopterin-dependent, calmodulin-independent and inhibited by arginine analogs with a rank-order of potency characteristic of activated macrophages. Gross SS; Jaffe EA; Levi R; Kilbourn RG Biochem Biophys Res Commun; 1991 Aug; 178(3):823-9. PubMed ID: 1714727 [TBL] [Abstract][Full Text] [Related]
19. Tetrahydrobiopterin is a limiting factor of nitric oxide generation in interleukin 1 beta-stimulated rat glomerular mesangial cells. Mühl H; Pfeilschifter J Kidney Int; 1994 Nov; 46(5):1302-6. PubMed ID: 7531790 [TBL] [Abstract][Full Text] [Related]
20. Effect of decreased levels of intrinsic tetrahydrobiopterin on endothelial function in anesthetized rats. Hamadate N; Noguchi K; Sakanashi M; Matsuzaki T; Nakasone J; Sakanashi M J Pharmacol Sci; 2008 May; 107(1):49-56. PubMed ID: 18446004 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]