These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 9252249)
1. Complement consumption by poly(ethylene glycol) in different conformations chemically coupled to poly(isobutyl 2-cyanoacrylate) nanoparticles. Peracchia MT; Vauthier C; Passirani C; Couvreur P; Labarre D Life Sci; 1997; 61(7):749-61. PubMed ID: 9252249 [TBL] [Abstract][Full Text] [Related]
2. Development of sterically stabilized poly(isobutyl 2-cyanoacrylate) nanoparticles by chemical coupling of poly(ethylene glycol). Peracchia MT; Vauthier C; Puisieux F; Couvreur P J Biomed Mater Res; 1997 Mar; 34(3):317-26. PubMed ID: 9086401 [TBL] [Abstract][Full Text] [Related]
3. Stealth PEG-PHDCA niosomes: effects of chain length of PEG on niosomes in vitro complement consumption and phagocytic uptake. Shi B; Fang C; You MX; Hong MH; Pei YY Yao Xue Xue Bao; 2005 Nov; 40(11):976-81. PubMed ID: 16499079 [TBL] [Abstract][Full Text] [Related]
4. The effect of poly(ethylene glycol) coating and monomer type on poly(alkyl cyanoacrylate) nanoparticle interactions with lipid monolayers and cells. Baghirov H; Melikishvili S; Mørch Y; Sulheim E; Åslund AKO; Hianik T; de Lange Davies C Colloids Surf B Biointerfaces; 2017 Feb; 150():373-383. PubMed ID: 27842930 [TBL] [Abstract][Full Text] [Related]
5. In vivo tumor targeting of tumor necrosis factor-alpha-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size. Fang C; Shi B; Pei YY; Hong MH; Wu J; Chen HZ Eur J Pharm Sci; 2006 Jan; 27(1):27-36. PubMed ID: 16150582 [TBL] [Abstract][Full Text] [Related]
6. [Influence of particle size and MePEG molecular weight on in vitro macrophage uptake and in vivo long circulating of stealth nanoparticles in rats]. Fang C; Shi B; Hong MH; Pei YY; Chen HZ Yao Xue Xue Bao; 2006 Apr; 41(4):305-12. PubMed ID: 16856473 [TBL] [Abstract][Full Text] [Related]
7. Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles. Sant S; Poulin S; Hildgen P J Biomed Mater Res A; 2008 Dec; 87(4):885-95. PubMed ID: 18228249 [TBL] [Abstract][Full Text] [Related]
8. Novel composite core-shell nanoparticles as busulfan carriers. Layre A; Couvreur P; Chacun H; Richard J; Passirani C; Requier D; Benoit JP; Gref R J Control Release; 2006 Apr; 111(3):271-80. PubMed ID: 16488504 [TBL] [Abstract][Full Text] [Related]
9. Poly(n-butyl cyanoacrylate) nanoparticles via miniemulsion polymerization. 2. PEG-based surfactants. Wu M; Dellacherie E; Durand A; Marie E Colloids Surf B Biointerfaces; 2009 Feb; 69(1):147-51. PubMed ID: 19027270 [TBL] [Abstract][Full Text] [Related]
10. Pegylated nanoparticles from a novel methoxypolyethylene glycol cyanoacrylate-hexadecyl cyanoacrylate amphiphilic copolymer. Peracchia MT; Vauthier C; Desmaële D; Gulik A; Dedieu JC; Demoy M; d'Angelo J; Couvreur P Pharm Res; 1998 Apr; 15(4):550-6. PubMed ID: 9587950 [TBL] [Abstract][Full Text] [Related]
11. Nanoparticles bearing polyethyleneglycol-coupled transferrin as gene carriers: preparation and in vitro evaluation. Li Y; Ogris M; Wagner E; Pelisek J; Rüffer M Int J Pharm; 2003 Jun; 259(1-2):93-101. PubMed ID: 12787639 [TBL] [Abstract][Full Text] [Related]
12. Freeze-drying of composite core-shell nanoparticles. Layre AM; Couvreur P; Richard J; Requier D; Eddine Ghermani N; Gref R Drug Dev Ind Pharm; 2006 Aug; 32(7):839-46. PubMed ID: 16908421 [TBL] [Abstract][Full Text] [Related]
13. Ocular tolerability and in vivo bioavailability of poly(ethylene glycol) (PEG)-coated polyethyl-2-cyanoacrylate nanosphere-encapsulated acyclovir. Fresta M; Fontana G; Bucolo C; Cavallaro G; Giammona G; Puglisi G J Pharm Sci; 2001 Mar; 90(3):288-97. PubMed ID: 11170022 [TBL] [Abstract][Full Text] [Related]
14. Effect of PEG conformation and particle size on the cellular uptake efficiency of nanoparticles with the HepG2 cells. Hu Y; Xie J; Tong YW; Wang CH J Control Release; 2007 Mar; 118(1):7-17. PubMed ID: 17241684 [TBL] [Abstract][Full Text] [Related]
15. 5-Fluorouracil-loaded PLA/PLGA PEG-PPG-PEG polymeric nanoparticles: formulation, in vitro characterization and cell culture studies. Ocal H; Arica-Yegin B; Vural I; Goracinova K; Caliş S Drug Dev Ind Pharm; 2014 Apr; 40(4):560-7. PubMed ID: 23596973 [TBL] [Abstract][Full Text] [Related]
16. Effect of the Polymer Architecture on the Structural and Biophysical Properties of PEG-PLA Nanoparticles. Rabanel JM; Faivre J; Tehrani SF; Lalloz A; Hildgen P; Banquy X ACS Appl Mater Interfaces; 2015 May; 7(19):10374-85. PubMed ID: 25909493 [TBL] [Abstract][Full Text] [Related]
17. Protein rejecting properties of PEG-grafted nanoparticles: influence of PEG-chain length and surface density evaluated by two-dimensional electrophoresis and bicinchoninic acid (BCA)-proteinassay. Gessner A; Paulke BR; Müller RH; Göppert TM Pharmazie; 2006 Apr; 61(4):293-7. PubMed ID: 16649540 [TBL] [Abstract][Full Text] [Related]
18. Translocation of poly(ethylene glycol-co-hexadecyl)cyanoacrylate nanoparticles into rat brain endothelial cells: role of apolipoproteins in receptor-mediated endocytosis. Kim HR; Andrieux K; Gil S; Taverna M; Chacun H; Desmaële D; Taran F; Georgin D; Couvreur P Biomacromolecules; 2007 Mar; 8(3):793-9. PubMed ID: 17309294 [TBL] [Abstract][Full Text] [Related]
19. Shedding light on surface exposition of poly(ethylene glycol) and folate targeting units on nanoparticles of poly(ε-caprolactone) diblock copolymers: Beyond a paradigm. Venuta A; Moret F; Dal Poggetto G; Esposito D; Fraix A; Avitabile C; Ungaro F; Malinconico M; Sortino S; Romanelli A; Laurienzo P; Reddi E; Quaglia F Eur J Pharm Sci; 2018 Jan; 111():177-185. PubMed ID: 28966100 [TBL] [Abstract][Full Text] [Related]
20. Characterization of rhodamine loaded PEG-g-PLA nanoparticles (NPs): effect of poly(ethylene glycol) grafting density. Essa S; Rabanel JM; Hildgen P Int J Pharm; 2011 Jun; 411(1-2):178-87. PubMed ID: 21458551 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]