These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 9252469)
1. Activation of glycolysis in human muscle in vivo. Conley KE; Blei ML; Richards TL; Kushmerick MJ; Jubrias SA Am J Physiol; 1997 Jul; 273(1 Pt 1):C306-15. PubMed ID: 9252469 [TBL] [Abstract][Full Text] [Related]
2. Glycolysis is independent of oxygenation state in stimulated human skeletal muscle in vivo. Conley KE; Kushmerick MJ; Jubrias SA J Physiol; 1998 Sep; 511 ( Pt 3)(Pt 3):935-45. PubMed ID: 9714871 [TBL] [Abstract][Full Text] [Related]
3. Interrelations of ATP synthesis and proton handling in ischaemically exercising human forearm muscle studied by 31P magnetic resonance spectroscopy. Kemp GJ; Roussel M; Bendahan D; Le Fur Y; Cozzone PJ J Physiol; 2001 Sep; 535(Pt 3):901-28. PubMed ID: 11559784 [TBL] [Abstract][Full Text] [Related]
4. Control of glycolysis in contracting skeletal muscle. II. Turning it off. Crowther GJ; Kemper WF; Carey MF; Conley KE Am J Physiol Endocrinol Metab; 2002 Jan; 282(1):E74-9. PubMed ID: 11739086 [TBL] [Abstract][Full Text] [Related]
5. Absence of phosphocreatine resynthesis in human calf muscle during ischaemic recovery. Quistorff B; Johansen L; Sahlin K Biochem J; 1993 May; 291 ( Pt 3)(Pt 3):681-6. PubMed ID: 8489495 [TBL] [Abstract][Full Text] [Related]
6. Control of glycolysis in contracting skeletal muscle. I. Turning it on. Crowther GJ; Carey MF; Kemper WF; Conley KE Am J Physiol Endocrinol Metab; 2002 Jan; 282(1):E67-73. PubMed ID: 11739085 [TBL] [Abstract][Full Text] [Related]
7. Glycolysis in contracting rat skeletal muscle is controlled by factors related to energy state. Ortenblad N; Macdonald WA; Sahlin K Biochem J; 2009 May; 420(2):161-8. PubMed ID: 19250062 [TBL] [Abstract][Full Text] [Related]
8. In vivo ATP synthesis rates in single human muscles during high intensity exercise. Walter G; Vandenborne K; Elliott M; Leigh JS J Physiol; 1999 Sep; 519 Pt 3(Pt 3):901-10. PubMed ID: 10457099 [TBL] [Abstract][Full Text] [Related]
9. ATP utilization and provision in fast-twitch skeletal muscle during tetanic contractions. Spriet LL Am J Physiol; 1989 Oct; 257(4 Pt 1):E595-605. PubMed ID: 2801938 [TBL] [Abstract][Full Text] [Related]
10. Simultaneous 31P MRS of the soleus and gastrocnemius in Sherpas during graded calf muscle exercise. Allen PS; Matheson GO; Zhu G; Gheorgiu D; Dunlop RS; Falconer T; Stanley C; Hochachka PW Am J Physiol; 1997 Sep; 273(3 Pt 2):R999-1007. PubMed ID: 9321879 [TBL] [Abstract][Full Text] [Related]
11. Anaerobic ATP provision, glycogenolysis and glycolysis in rat slow-twitch muscle during tetanic contractions. Spriet LL Pflugers Arch; 1990 Nov; 417(3):278-84. PubMed ID: 2148818 [TBL] [Abstract][Full Text] [Related]
12. Bioenergetics of intact human muscle. A 31P nuclear magnetic resonance study. Taylor DJ; Bore PJ; Styles P; Gadian DG; Radda GK Mol Biol Med; 1983 Jul; 1(1):77-94. PubMed ID: 6679873 [TBL] [Abstract][Full Text] [Related]
13. A relationship between impaired fetal growth and reduced muscle glycolysis revealed by 31P magnetic resonance spectroscopy. Taylor DJ; Thompson CH; Kemp GJ; Barnes PR; Sanderson AL; Radda GK; Phillips DI Diabetologia; 1995 Oct; 38(10):1205-12. PubMed ID: 8690173 [TBL] [Abstract][Full Text] [Related]
14. Physiological constraints on changes in pH and phosphorus metabolite concentrations in ischemically exercising muscle: implications for metabolic control and for the interpretation of 31P-magnetic resonance spectroscopic studies. Kemp GJ MAGMA; 1997 Sep; 5(3):231-41. PubMed ID: 9351027 [TBL] [Abstract][Full Text] [Related]
15. How to keep glycolytic metabolite concentrations constant when ATP/ADP and NADH/NAD+ change. Liguzinski P; Korzeniewski B Syst Biol (Stevenage); 2006 Sep; 153(5):332-4. PubMed ID: 16986310 [TBL] [Abstract][Full Text] [Related]
16. Individual variation in contractile cost and recovery in a human skeletal muscle. Blei ML; Conley KE; Odderson IB; Esselman PC; Kushmerick MJ Proc Natl Acad Sci U S A; 1993 Aug; 90(15):7396-400. PubMed ID: 8346262 [TBL] [Abstract][Full Text] [Related]
17. Functional pools of oxidative and glycolytic fibers in human muscle observed by 31P magnetic resonance spectroscopy during exercise. Park JH; Brown RL; Park CR; McCully K; Cohn M; Haselgrove J; Chance B Proc Natl Acad Sci U S A; 1987 Dec; 84(24):8976-80. PubMed ID: 3480522 [TBL] [Abstract][Full Text] [Related]
18. Recovery of free ADP, Pi, and free energy of ATP hydrolysis in human skeletal muscle. Wackerhage H; Hoffmann U; Essfeld D; Leyk D; Mueller K; Zange J J Appl Physiol (1985); 1998 Dec; 85(6):2140-5. PubMed ID: 9843537 [TBL] [Abstract][Full Text] [Related]
19. Theoretical studies on the regulation of anaerobic glycolysis and its influence on oxidative phosphorylation in skeletal muscle. Korzeniewski B; Liguzinski P Biophys Chem; 2004 Jul; 110(1-2):147-69. PubMed ID: 15223151 [TBL] [Abstract][Full Text] [Related]
20. Phosphagen and intracellular pH changes during contraction of creatine-depleted rat muscle. Meyer RA; Brown TR; Krilowicz BL; Kushmerick MJ Am J Physiol; 1986 Feb; 250(2 Pt 1):C264-74. PubMed ID: 3953780 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]