BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 9252523)

  • 1. Effect of cholestasis on regulation of cAMP synthesis by glucagon and bile acids in isolated hepatocytes.
    Matsuzaki Y; Bouscarel B; Le M; Ceryak S; Gettys TW; Shoda J; Fromm H
    Am J Physiol; 1997 Jul; 273(1 Pt 1):G164-74. PubMed ID: 9252523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in G protein expression account for impaired modulation of hepatic cAMP formation after BDL.
    Bouscarel B; Matsuzaki Y; Le M; Gettys TW; Fromm H
    Am J Physiol; 1998 Jun; 274(6):G1151-9. PubMed ID: 9696716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ursodeoxycholic acid inhibits glucagon-induced cAMP formation in hamster hepatocytes: a role for PKC.
    Bouscarel B; Gettys TW; Fromm H; Dubner H
    Am J Physiol; 1995 Feb; 268(2 Pt 1):G300-10. PubMed ID: 7864127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alteration of cAMP-mediated hormonal responsiveness by bile acids in cells of nonhepatic origin.
    Bouscarel B; Ceryak S; Gettys TW; Fromm H; Noonan F
    Am J Physiol; 1995 Jun; 268(6 Pt 1):G908-16. PubMed ID: 7611411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ursodeoxycholate and tauroursodeoxycholate inhibit cholangiocyte growth and secretion of BDL rats through activation of PKC alpha.
    Alpini G; Baiocchi L; Glaser S; Ueno Y; Marzioni M; Francis H; Phinizy JL; Angelico M; Lesage G
    Hepatology; 2002 May; 35(5):1041-52. PubMed ID: 11981754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decreased glucagon responsiveness by bile acids: a role for protein kinase Calpha and glucagon receptor phosphorylation.
    Ikegami T; Krilov L; Meng J; Patel B; Chapin-Kennedy K; Bouscarel B
    Endocrinology; 2006 Nov; 147(11):5294-302. PubMed ID: 16916948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vasopressin and phorbol-12,13-dibutyrate inhibit glucagon- or cyclic AMP-stimulated taurocholate uptake in isolated rat hepatocytes.
    Divald A; Simpser E; Fisher SE; Karl PI
    Hepatology; 1994 Jul; 20(1 Pt 1):159-65. PubMed ID: 8020886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of glucagon-induced adenosine 3' ,5' -monophosphate concentrations on bile acid synthesis in isolated rat liver cells.
    Botham KM; Suckling KE; Boyd GS
    FEBS Lett; 1984 Mar; 168(2):317-20. PubMed ID: 6327368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ethanol increases receptor-dependent cyclic AMP production in cultured hepatocytes by decreasing G(i)-mediated inhibition.
    Nagy LE; DeSilva SE
    Biochem J; 1992 Sep; 286 ( Pt 3)(Pt 3):681-6. PubMed ID: 1358061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolism and effects on cholestasis of isoursodeoxycholic and ursodeoxycholic acids in bile duct ligated rats.
    Purucker E; Marschall HU; Winograd R; Matern S
    Biochim Biophys Acta; 2001 Apr; 1526(1):44-52. PubMed ID: 11287121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity of cAMP-dependent protein kinase is reduced in protein-energy malnourished rats.
    Rozwadowski M; Stephen LL; Goss PM; Bray TM; Nagy LE
    J Nutr; 1995 Mar; 125(3):401-9. PubMed ID: 7876914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bile canalicular barrier function and expression of tight-junctional molecules in rat hepatocytes during common bile duct ligation.
    Takakuwa Y; Kokai Y; Sasaki K; Chiba H; Tobioka H; Mori M; Sawada N
    Cell Tissue Res; 2002 Feb; 307(2):181-9. PubMed ID: 11845325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in bile acid composition of serum and gallbladder bile in bile duct ligated dogs.
    Washizu T; Ishida T; Washizu M; Tomoda I; Kaneko JJ
    J Vet Med Sci; 1994 Apr; 56(2):299-303. PubMed ID: 8075218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphologic changes in livers of hamsters treated with high doses of ursodeoxycholic acid: correlation with bile acids in bile.
    Mamianetti A; Konopka HF; Lago N; Vescina C; Scarlato E; Carducci CN
    Pharmacol Res; 1994; 29(2):187-95. PubMed ID: 8058592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive regulation of bile salt transporters in kidney and liver in obstructive cholestasis in the rat.
    Lee J; Azzaroli F; Wang L; Soroka CJ; Gigliozzi A; Setchell KD; Kramer W; Boyer JL
    Gastroenterology; 2001 Dec; 121(6):1473-84. PubMed ID: 11729126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive response of the enterohepatic circulation of bile acids to extrahepatic cholestasis.
    Dumaswala R; Berkowitz D; Heubi JE
    Hepatology; 1996 Mar; 23(3):623-9. PubMed ID: 8617445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of ursodeoxycholic acid administration on bile duct proliferation and cholestasis in bile duct ligated rat.
    Frezza EE; Gerunda GE; Plebani M; Galligioni A; Giacomini A; Neri D; Faccioli AM; Tiribelli C
    Dig Dis Sci; 1993 Jul; 38(7):1291-6. PubMed ID: 8325189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. S-adenosylmethionine and cAMP confer differential cytoprotection against bile acid-induced apoptosis in canine renal tubular cells and primary rat hepatocytes.
    Webster CR; Boria P; Usechak P; Anwer MS
    Vet Ther; 2002; 3(4):474-84. PubMed ID: 12584685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclic adenosine monophosphate-mediated protection against bile acid-induced apoptosis in cultured rat hepatocytes.
    Webster CR; Anwer MS
    Hepatology; 1998 May; 27(5):1324-31. PubMed ID: 9581687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of glucagon on intracellular pH regulation in isolated rat hepatocyte couplets.
    Alvaro D; Della Guardia P; Bini A; Gigliozzi A; Furfaro S; La Rosa T; Piat C; Capocaccia L
    J Clin Invest; 1995 Aug; 96(2):665-75. PubMed ID: 7635959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.