BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 9252523)

  • 21. Effects of bile acids and cholestasis on major histocompatibility complex class I in human and rat hepatocytes.
    Hillaire S; Boucher E; Calmus Y; Gane P; Ballet F; Franco D; Moukthar M; Poupon R
    Gastroenterology; 1994 Sep; 107(3):781-8. PubMed ID: 8076765
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanism of the impairment of the glucagon-stimulated phosphoenolpyruvate carboxykinase gene expression by interleukin-6 in rat hepatocytes: inhibition of the increase in cyclic 3',5' adenosine monophosphate and the downstream cyclic 3',5' adenosine monophosphate action.
    Christ B; Nath A; Jungermann K
    Hepatology; 1997 Jul; 26(1):73-80. PubMed ID: 9214454
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of ursodeoxycholic acid on hepatic LDL binding and uptake in dietary hypercholesterolemic hamsters.
    Ceryak S; Bouscarel B; Malavolti M; Robins SJ; Caslow KL; Fromm H
    Atherosclerosis; 2000 Nov; 153(1):59-67. PubMed ID: 11058700
    [TBL] [Abstract][Full Text] [Related]  

  • 24. mechanism of glucagon choleresis in guinea pigs.
    Lenzen R; Hruby VJ; Tavoloni N
    Am J Physiol; 1990 Nov; 259(5 Pt 1):G736-44. PubMed ID: 2173415
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hormonal regulation of glutathione efflux.
    Lu SC; Garcia-Ruiz C; Kuhlenkamp J; Ookhtens M; Salas-Prato M; Kaplowitz N
    J Biol Chem; 1990 Sep; 265(27):16088-95. PubMed ID: 2168879
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biphasic regulation by bile acids of dermal fibroblast proliferation through regulation of cAMP production and COX-2 expression level.
    Meng JP; Ceryak S; Aratsu Z; Jones L; Epstein L; Bouscarel B
    Am J Physiol Cell Physiol; 2006 Sep; 291(3):C546-54. PubMed ID: 16687473
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Glucagon and cAMP inhibit cholesterol 7alpha-hydroxylase (CYP7A1) gene expression in human hepatocytes: discordant regulation of bile acid synthesis and gluconeogenesis.
    Song KH; Chiang JY
    Hepatology; 2006 Jan; 43(1):117-25. PubMed ID: 16323215
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dissociation of the alpha-adrenergic inhibitory effects on glucagon- and secretin-stimulated bile volume and on cyclic adenosine monophosphate production in the isolated perfused rat liver.
    Yamatani K; Sato N; Takahashi K; Hara M; Sasaki H
    Endocrinology; 1985 May; 116(5):1694-8. PubMed ID: 2859188
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of neonatal nutrition on glucagon binding and glucagon stimulated cAMP production in isolated rat hepatocytes.
    Ficková M; Macho L
    Endocrinol Exp; 1988 Sep; 22(3):131-41. PubMed ID: 2851436
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Induction of cholestasis in the perfused rat liver by 2-aminoethyl diphenylborate, an inhibitor of the hepatocyte plasma membrane Ca2+ channels.
    Gregory RB; Hughes R; Barritt GJ
    J Gastroenterol Hepatol; 2004 Oct; 19(10):1128-34. PubMed ID: 15377289
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Early growth response factor-1 is critical for cholestatic liver injury.
    Kim ND; Moon JO; Slitt AL; Copple BL
    Toxicol Sci; 2006 Apr; 90(2):586-95. PubMed ID: 16423862
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of bile acids on iodide uptake and deoxyribonucleic acid synthesis in porcine thyroid cells in primary culture.
    Kanri R; Takiyama Y; Makino I
    Thyroid; 1996 Oct; 6(5):467-74. PubMed ID: 8936674
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Co-transfection with protein kinase D confers phorbol-ester-mediated inhibition on glucagon-stimulated cAMP accumulation in COS cells transfected to overexpress glucagon receptors.
    Tobias ES; Rozengurt E; Connell JM; Houslay MD
    Biochem J; 1997 Sep; 326 ( Pt 2)(Pt 2):545-51. PubMed ID: 9291130
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Changes of the insulin and glucagon receptors in bile-duct ligated rats].
    Sakai H
    Nihon Geka Gakkai Zasshi; 1992 Jan; 93(1):36-42. PubMed ID: 1312662
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Studies on the mechanism of the ursodeoxycholic acid-induced increase in hepatic low-density lipoprotein binding.
    Bouscarel B; Ceryak S; Robins SJ; Fromm H
    Lipids; 1995 Jul; 30(7):607-17. PubMed ID: 7564915
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bile acids induce inflammatory genes in hepatocytes: a novel mechanism of inflammation during obstructive cholestasis.
    Allen K; Jaeschke H; Copple BL
    Am J Pathol; 2011 Jan; 178(1):175-86. PubMed ID: 21224055
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Complex feedback regulation of bile acid synthesis in the hamster: the role of newly synthesized cholesterol.
    Scheibner J; Fuchs M; Hörmann E; Stange EF
    Hepatology; 1999 Jul; 30(1):230-7. PubMed ID: 10385661
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bile acids content in brain of common duct ligated rats.
    Tripodi V; Contin M; Fernández MA; Lemberg A
    Ann Hepatol; 2012; 11(6):930-4. PubMed ID: 23111582
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Angiotensin II stimulates the synthesis of angiotensinogen in hepatocytes by inhibiting adenylylcyclase activity and stabilizing angiotensinogen mRNA.
    Klett C; Nobiling R; Gierschik P; Hackenthal E
    J Biol Chem; 1993 Nov; 268(33):25095-107. PubMed ID: 8227073
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cholestasis increases tumor necrosis factor-related apoptotis-inducing ligand (TRAIL)-R2/DR5 expression and sensitizes the liver to TRAIL-mediated cytotoxicity.
    Higuchi H; Bronk SF; Taniai M; Canbay A; Gores GJ
    J Pharmacol Exp Ther; 2002 Nov; 303(2):461-7. PubMed ID: 12388624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.