These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 9253049)
1. An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy. Wagnières G; Cheng S; Zellweger M; Utke N; Braichotte D; Ballini JP; van den Bergh H Phys Med Biol; 1997 Jul; 42(7):1415-26. PubMed ID: 9253049 [TBL] [Abstract][Full Text] [Related]
2. Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum. Liu Q; Zhu C; Ramanujam N J Biomed Opt; 2003 Apr; 8(2):223-36. PubMed ID: 12683848 [TBL] [Abstract][Full Text] [Related]
3. Low-cost fabrication of optical tissue phantoms for use in biomedical imaging. Ntombela L; Adeleye B; Chetty N Heliyon; 2020 Mar; 6(3):e03602. PubMed ID: 32258463 [TBL] [Abstract][Full Text] [Related]
4. Method for rapid multidiameter single-fiber reflectance and fluorescence spectroscopy through a fiber bundle. Hoy CL; Gamm UA; Sterenborg HJ; Robinson DJ; Amelink A J Biomed Opt; 2013 Oct; 18(10):107005. PubMed ID: 24126725 [TBL] [Abstract][Full Text] [Related]
5. A solid tissue phantom for photon migration studies. Cubeddu R; Pifferi A; Taroni P; Torricelli A; Valentini G Phys Med Biol; 1997 Oct; 42(10):1971-9. PubMed ID: 9364593 [TBL] [Abstract][Full Text] [Related]
6. Characterization and standardization of tissue-simulating protoporphyrin IX optical phantoms. Marois M; Bravo J; Davis SC; Kanick SC J Biomed Opt; 2016 Mar; 21(3):35003. PubMed ID: 26968385 [TBL] [Abstract][Full Text] [Related]
7. Measurements of the optical coefficients of the protoporphyrin IX endogenously producing yeast-based model in the visible and NIR. Joniová J; Kažiková V; Gerelli E; Bánó G; Wagnières G J Biomed Opt; 2018 Jul; 23(7):1-5. PubMed ID: 29981223 [TBL] [Abstract][Full Text] [Related]
8. Multilayered tissue mimicking skin and vessel phantoms with tunable mechanical, optical, and acoustic properties. Chen AI; Balter ML; Chen MI; Gross D; Alam SK; Maguire TJ; Yarmush ML Med Phys; 2016 Jun; 43(6):3117-3131. PubMed ID: 27277058 [TBL] [Abstract][Full Text] [Related]
9. Optical phantoms with variable properties and geometries for diffuse and fluorescence optical spectroscopy. Leh B; Siebert R; Hamzeh H; Menard L; Duval MA; Charon Y; Abi Haidar D J Biomed Opt; 2012 Oct; 17(10):108001. PubMed ID: 23224016 [TBL] [Abstract][Full Text] [Related]
11. Optical properties of Intralipid: a phantom medium for light propagation studies. Flock ST; Jacques SL; Wilson BC; Star WM; van Gemert MJ Lasers Surg Med; 1992; 12(5):510-9. PubMed ID: 1406004 [TBL] [Abstract][Full Text] [Related]
12. 3D printing-assisted fabrication of double-layered optical tissue phantoms for laser tattoo treatments. Kim H; Hau NT; Chae YG; Lee BI; Kang HW Lasers Surg Med; 2016 Apr; 48(4):392-9. PubMed ID: 26749358 [TBL] [Abstract][Full Text] [Related]
13. Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm. Troy TL; Thennadil SN J Biomed Opt; 2001 Apr; 6(2):167-76. PubMed ID: 11375726 [TBL] [Abstract][Full Text] [Related]
14. Optical phantom materials for near infrared laser photocoagulation studies. Iizuka MN; Sherar MD; Vitkin IA Lasers Surg Med; 1999; 25(2):159-69. PubMed ID: 10455223 [TBL] [Abstract][Full Text] [Related]
16. Measurement and analysis of light distribution in intralipid-10% at 650 nm. Xu T; Zhang C; Wang X; Zhang L; Tian J Appl Opt; 2003 Oct; 42(28):5777-84. PubMed ID: 14528943 [TBL] [Abstract][Full Text] [Related]
17. Effects of Intralipid-10% in fluorescence distortion studies on liquid-tissue phantoms in UV range. Suresh Anand BS; Sujatha N J Biophotonics; 2011 Jan; 4(1-2):92-7. PubMed ID: 20414902 [TBL] [Abstract][Full Text] [Related]
18. Diffuse reflectance spectroscopy characterization of hemoglobin and intralipid solutions: in vitro measurements with continuous variation of absorption and scattering. Hernández SE; Rodríguez VD; Pérez J; Martín FA; Castellano MA; Gonzalez-Mora JL J Biomed Opt; 2009; 14(3):034026. PubMed ID: 19566319 [TBL] [Abstract][Full Text] [Related]
19. Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms. Palmer GM; Ramanujam N Appl Opt; 2006 Feb; 45(5):1062-71. PubMed ID: 16512550 [TBL] [Abstract][Full Text] [Related]
20. Determination of the concentration scaling law of the scattering coefficient of water solutions of Intralipid at 832 nm by comparison between collimated detection measurements and Monte Carlo simulations. Autiero M; Liuzzi R; Riccio P; Roberti G Lasers Surg Med; 2005 Jun; 36(5):414-22. PubMed ID: 15900560 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]