BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 9253186)

  • 1. Determination of coal tar and creosote constituents in the aquatic environment.
    Hale RC; Aneiro KM
    J Chromatogr A; 1997 Jul; 774(1-2):79-95. PubMed ID: 9253186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive composition of Creosote using comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GCxGC-TOFMS).
    Gallacher C; Thomas R; Taylor C; Lord R; Kalin RM
    Chemosphere; 2017 Jul; 178():34-41. PubMed ID: 28315805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluoranthene, a volatile mutagenic compound, present in creosote and coal tar.
    Bos RP; Prinsen WJ; van Rooy JG; Jongeneelen FJ; Theuws JL; Henderson PT
    Mutat Res; 1987 Mar; 187(3):119-25. PubMed ID: 3547111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rebound of a coal tar creosote plume following partial source zone treatment with permanganate.
    Thomson NR; Fraser MJ; Lamarche C; Barker JF; Forsey SP
    J Contam Hydrol; 2008 Nov; 102(1-2):154-71. PubMed ID: 18757111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subsurface detection of fossil fuel pollutants by photoionization and gas chromatography/mass spectrometry.
    Robbat A; Considine T; Antle PM
    Chemosphere; 2010 Sep; 80(11):1370-6. PubMed ID: 20594575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Covalent binding of components of coal-tar, creosote and bitumen to the DNA of the skin and lungs of mice following topical application.
    Schoket B; Hewer A; Grover PL; Phillips DH
    Carcinogenesis; 1988 Jul; 9(7):1253-8. PubMed ID: 3383342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-sustaining smoldering combustion for NAPL remediation: laboratory evaluation of process sensitivity to key parameters.
    Pironi P; Switzer C; Gerhard JI; Rein G; Torero JL
    Environ Sci Technol; 2011 Apr; 45(7):2980-6. PubMed ID: 21351763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Movement and identification of a creosote-derived PAH complex below a river pollution point source.
    Black JJ
    Arch Environ Contam Toxicol; 1982; 11(2):161-6. PubMed ID: 6284067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Storage and source of polycyclic aromatic hydrocarbons in sediments downstream of a major coal district in France.
    Bertrand O; Mondamert L; Grosbois C; Dhivert E; Bourrain X; Labanowski J; Desmet M
    Environ Pollut; 2015 Dec; 207():329-40. PubMed ID: 26444225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of volatile mutagens in creosote and coal tar.
    Bos RP; Jongeneelen FJ; Theuws JL; Henderson PT
    Mutat Res; 1985 Jun; 156(3):195-8. PubMed ID: 3889636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-performance liquid chromatographic determination of azaarenes and their metabolites in groundwater affected by creosote wood preservatives.
    Ondrus MG; Steinheimer TR
    J Chromatogr Sci; 1990 Jun; 28(6):324-30. PubMed ID: 2246357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Packed-column supercritical fluid chromatography coupled with solid-phase extraction for the determination of organic microcontaminants in water.
    Toribio L; del Nozal MJ; Bernal JL; Jiménez JJ; Serna ML
    J Chromatogr A; 1998 Oct; 823(1-2):163-70. PubMed ID: 9818402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Speciation of nitrogen-containing compounds in an unfractionated coal tar sample by comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry.
    da Silva JM; Machado ME; Maciel GP; Dal Molin D; Caramão EB
    J Chromatogr A; 2014 Dec; 1373():159-68. PubMed ID: 25464993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Particle size distribution and chemical composition of coal-tar fumes.
    Hittle DC; Stukel JJ
    Am Ind Hyg Assoc J; 1976 Apr; 37(4):199-204. PubMed ID: 1274839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Field scale characterization and modeling of contaminant release from a coal tar source zone.
    D'Affonseca FM; Blum P; Finkel M; Melzer R; Grathwohl P
    J Contam Hydrol; 2008 Nov; 102(1-2):120-39. PubMed ID: 18538890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis.
    van der Veen I; de Boer J
    Chemosphere; 2012 Aug; 88(10):1119-53. PubMed ID: 22537891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of antimicrobial food components.
    Papetti A
    Curr Opin Biotechnol; 2012 Apr; 23(2):168-73. PubMed ID: 21962391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring the synthesis of new pitches from coal tar and its fractions by chromatography and related techniques.
    Bermejo J; Fernández AL; Prada V; Granda M; Menéndez R
    J Chromatogr A; 1999 Jul; 849(2):507-19. PubMed ID: 10457446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the wetting behavior of coal tar in three phase systems and its modification by poloxamine block copolymeric surfactants.
    Dong J; Chowdhry B; Leharne S
    Environ Sci Technol; 2004 Jan; 38(2):594-602. PubMed ID: 14750737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using polymer solutions to enhance recovery of mobile coal tar and creosote DNAPLs.
    Giese SW; Powers SE
    J Contam Hydrol; 2002 Sep; 58(1-2):147-67. PubMed ID: 12236554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.