BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 9253649)

  • 1. A 13C solid state nuclear magnetic resonance spectroscopic study of cork cell wall structure: the effect of suberin removal.
    Gil AM; Lopes M; Rocha J; Pascoal Neto C
    Int J Biol Macromol; 1997 Jul; 20(4):293-305. PubMed ID: 9253649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 13C solid-state nuclear magnetic resonance and Fourier transform infrared studies of the thermal decomposition of cork.
    Pascoal Neto C; Rocha J; Gil A; Cordeiro N; Esculcas AP; Rocha S; Delgadillo I; de Jesus JD; Correia AJ
    Solid State Nucl Magn Reson; 1995 Mar; 4(3):143-51. PubMed ID: 7773647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitation of aliphatic suberin in Quercus suber L. cork by FTIR spectroscopy and solid-state (13)C-NMR spectroscopy.
    Lopes MH; Neto CP; Barros AS; Rutledge D; Delgadillo I; Gil AM
    Biopolymers; 2000; 57(6):344-51. PubMed ID: 11054654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Composition of suberin extracted upon gradual alkaline methanolysis of Quercus suber L. cork.
    Lopes MH; Gil AM; Silvestre AJ; Neto CP
    J Agric Food Chem; 2000 Feb; 48(2):383-91. PubMed ID: 10691644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthesis, molecular structure, and domain architecture of potato suberin: a (13)C NMR study using isotopically labeled precursors.
    Yan B; Stark RE
    J Agric Food Chem; 2000 Aug; 48(8):3298-304. PubMed ID: 10956105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectral editing of 13C cp/MAS NMR spectra of complex systems: application to the structural characterisation of cork cell walls.
    Lopes MH; Sarychev A; Neto CP; Gil AM
    Solid State Nucl Magn Reson; 2000 Jun; 16(3):109-21. PubMed ID: 10868562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic isolation and structural characterisation of polymeric suberin of cork from Quercus suber L.
    Rocha SM; Goodfellow BJ; Delgadillo I; Neto CP; Gil AM
    Int J Biol Macromol; 2001 Jan; 28(2):107-19. PubMed ID: 11164227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stereochemistry of C18 monounsaturated cork suberin acids determined by spectroscopic techniques including (1) H-NMR multiplet analysis of olefinic protons.
    Santos S; Graça J
    Phytochem Anal; 2014; 25(3):192-200. PubMed ID: 24307616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using trifluoroacetic acid to augment studies of potato suberin molecular structure.
    Arrieta-Baez D; Stark RE
    J Agric Food Chem; 2006 Dec; 54(26):9636-41. PubMed ID: 17177481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Partial depolymerization of genetically modified potato tuber periderm reveals intermolecular linkages in suberin polyester.
    Graça J; Cabral V; Santos S; Lamosa P; Serra O; Molinas M; Schreiber L; Kauder F; Franke R
    Phytochemistry; 2015 Sep; 117():209-219. PubMed ID: 26093489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimutagenicity of a suberin extract from Quercus suber cork.
    Krizková L; Lopes MH; Polónyi J; Belicová A; Dobias J; Ebringer L
    Mutat Res; 1999 Dec; 446(2):225-30. PubMed ID: 10635345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cork suberin as a new source of chemicals. 1. Isolation and chemical characterization of its composition.
    Cordeiro N; Belgacem MN; Silvestre AJ; Pascoal Neto C; Gandini A
    Int J Biol Macromol; 1998 Apr; 22(2):71-80. PubMed ID: 9585884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstructing the suberin pathway in poplar by chemical and transcriptomic analysis of bark tissues.
    Rains MK; Gardiyehewa de Silva ND; Molina I
    Tree Physiol; 2018 Mar; 38(3):340-361. PubMed ID: 28575526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydroxycinnamic acid-derived polymers constitute the polyaromatic domain of suberin.
    Bernards MA; Lopez ML; Zajicek J; Lewis NG
    J Biol Chem; 1995 Mar; 270(13):7382-6. PubMed ID: 7706282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linear aliphatic dimeric esters from cork suberin.
    Graça J; Santos S
    Biomacromolecules; 2006 Jun; 7(6):2003-10. PubMed ID: 16768426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical analysis and immunolocalisation of lignin and suberin in endodermal and hypodermal/rhizodermal cell walls of developing maize (Zea mays L.) primary roots.
    Zeier J; Ruel K; Ryser U; Schreiber L
    Planta; 1999 Jul; 209(1):1-12. PubMed ID: 10467026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elucidation of the Structure of Lignin-Carbohydrate Complexes in Ginkgo CW-DHP by
    Zhang K; Liu Y; Cui S; Xie Y
    Molecules; 2021 Sep; 26(19):. PubMed ID: 34641284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Following Suberization in Potato Wound Periderm by Histochemical and Solid-State 13C Nuclear Magnetic Resonance Methods.
    Stark RE; Sohn W; Pacchiano RA; Al-Bashir M; Garbow JR
    Plant Physiol; 1994 Feb; 104(2):527-533. PubMed ID: 12232102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variability of cork from Portuguese Quercus suber studied by solid-state (13)C-NMR and FTIR spectroscopies.
    Lopes MH; Barros AS; Pascoal Neto C; Rutledge D; Delgadillo I; Gil AM
    Biopolymers; 2001; 62(5):268-77. PubMed ID: 11745122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magic-angle spinning NMR studies of cell wall bound aromatic-aliphatic biopolyesters associated with strengthening of intercellular adhesion in potato (Solanum tuberosum L.) tuber parenchyma.
    Yu B; Vengadesan G; Wang H; Jashi L; Yefremov T; Tian S; Gaba V; Shomer I; Stark RE
    Biomacromolecules; 2006 Mar; 7(3):937-44. PubMed ID: 16529434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.