These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 9253649)

  • 21. Suberized cell walls of cork from cork oak differ from other species.
    Teixeira RT; Pereira H
    Microsc Microanal; 2010 Oct; 16(5):569-75. PubMed ID: 20804640
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The poly(phenolic) domain of potato suberin: a non-lignin cell wall bio-polymer.
    Bernards MA; Razem FA
    Phytochemistry; 2001 Aug; 57(7):1115-22. PubMed ID: 11430984
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New insights into the interactions between cork chemical components and pesticides. The contribution of π-π interactions, hydrogen bonding and hydrophobic effect.
    Olivella MÀ; Bazzicalupi C; Bianchi A; Fiol N; Villaescusa I
    Chemosphere; 2015 Jan; 119():863-870. PubMed ID: 25240950
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemical composition and ultrastructure of broad bean (Vicia faba L.) nodule endodermis in comparison to the root endodermis.
    Hartmann K; Peiter E; Koch K; Schubert S; Schreiber L
    Planta; 2002 May; 215(1):14-25. PubMed ID: 12012237
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solid-state 13C NMR spectroscopy studies of xylans in the cell wall of Palmaria palmata (L. Kuntze, Rhodophyta).
    Lahaye M; Rondeau-Mouro C; Deniaud E; Buléon A
    Carbohydr Res; 2003 Jul; 338(15):1559-69. PubMed ID: 12860427
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cork suberin molecular structure: stereochemistry of the C18 epoxy and vic-diol ω-hydroxyacids and α,ω-diacids analyzed by NMR.
    Santos S; Cabral V; Graça J
    J Agric Food Chem; 2013 Jul; 61(29):7038-47. PubMed ID: 23841500
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural characterization of lignin from leaf sheaths of "dwarf cavendish" banana plant.
    Oliveira L; Evtuguin DV; Cordeiro N; Silvestre AJ; Silva AM; Torres IC
    J Agric Food Chem; 2006 Apr; 54(7):2598-605. PubMed ID: 16569050
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Langmuir monolayers of fractions of cork suberin extract.
    Barros-Timmons A; Lopes MH; Pascoal Neto C; Dhanabalan A; Oliveira ON
    Colloids Surf B Biointerfaces; 2010 Sep; 79(2):516-20. PubMed ID: 20605704
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Suberin: the biopolyester at the frontier of plants.
    Graça J
    Front Chem; 2015; 3():62. PubMed ID: 26579510
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sustainable plant polyesters as substrates for optical gas sensors.
    Rodrigues R; Palma SICJ; G Correia V; Padrão I; Pais J; Banza M; Alves C; Deuermeier J; Martins C; Costa HMA; Ramou E; Silva Pereira C; Roque ACA
    Mater Today Bio; 2020 Sep; 8():100083. PubMed ID: 33294837
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Suberin of potato (Solanum tuberosum var. Nikola): comparison of the effect of cutinase CcCut1 with chemical depolymerization.
    Järvinen R; Silvestre AJ; Holopainen U; Kaimainen M; Nyyssölä A; Gil AM; Pascoal Neto C; Lehtinen P; Buchert J; Kallio H
    J Agric Food Chem; 2009 Oct; 57(19):9016-27. PubMed ID: 19739639
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A genomic approach to suberin biosynthesis and cork differentiation.
    Soler M; Serra O; Molinas M; Huguet G; Fluch S; Figueras M
    Plant Physiol; 2007 May; 144(1):419-31. PubMed ID: 17351057
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ChIP-Seq reveals that QsMYB1 directly targets genes involved in lignin and suberin biosynthesis pathways in cork oak (Quercus suber).
    Capote T; Barbosa P; Usié A; Ramos AM; Inácio V; Ordás R; Gonçalves S; Morais-Cecílio L
    BMC Plant Biol; 2018 Sep; 18(1):198. PubMed ID: 30223777
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unravelling the distinct crystallinity and thermal properties of suberin compounds from Quercus suber and Betula pendula outer barks.
    Sousa AF; Gandini A; Caetano A; Maria TM; Freire CS; Neto CP; Silvestre AJ
    Int J Biol Macromol; 2016 Dec; 93(Pt A):686-694. PubMed ID: 27632951
    [TBL] [Abstract][Full Text] [Related]  

  • 35. NMR studies of structure and dynamics in fruit cuticle polyesters.
    Stark RE; Yan B; Ray AK; Chen Z; Fang X; Garbow JR
    Solid State Nucl Magn Reson; 2000 May; 16(1-2):37-45. PubMed ID: 10811427
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Insights into cork weathering regarding colour, chemical and cellular changes in view of outdoor applications.
    Miranda I; Lourenço A; Simões R; Athayde J; Pereira H
    PLoS One; 2024; 19(4):e0301384. PubMed ID: 38574047
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of lignin structures and lignin-carbohydrate complex (LCC) linkages by quantitative 13C and 2D HSQC NMR spectroscopy.
    Yuan TQ; Sun SN; Xu F; Sun RC
    J Agric Food Chem; 2011 Oct; 59(19):10604-14. PubMed ID: 21879769
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wax and suberin development of native and wound periderm of potato (Solanum tuberosum L.) and its relation to peridermal transpiration.
    Schreiber L; Franke R; Hartmann K
    Planta; 2005 Feb; 220(4):520-30. PubMed ID: 15378368
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lignin-carbohydrate complexes from sisal (Agave sisalana) and abaca (Musa textilis): chemical composition and structural modifications during the isolation process.
    Del Río JC; Prinsen P; Cadena EM; Martínez ÁT; Gutiérrez A; Rencoret J
    Planta; 2016 May; 243(5):1143-58. PubMed ID: 26848983
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unraveling ferulate role in suberin and periderm biology by reverse genetics.
    Serra O; Figueras M; Franke R; Prat S; Molinas M
    Plant Signal Behav; 2010 Aug; 5(8):953-8. PubMed ID: 20657184
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.