These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 9253655)
1. Induction of cyclic AMP and cyclic GMP 3':5'-cyclic nucleotide phosphodiesterase activities in neuroblastoma lines under differentiating conditions. Giorgi M; Giordano D; Caniglia C; Biagioni S; Augusti-Tocco G Int J Dev Neurosci; 1997 Jun; 15(3):309-19. PubMed ID: 9253655 [TBL] [Abstract][Full Text] [Related]
2. Role of phosphodiesterases III and IV in the modulation of vascular cyclic AMP content by the NO/cyclic GMP pathway. Eckly AE; Lugnier C Br J Pharmacol; 1994 Oct; 113(2):445-50. PubMed ID: 7834194 [TBL] [Abstract][Full Text] [Related]
3. Changes in phosphodiesterase activity in the developing rat submandibular gland. Tanaka S; Shimooka S; Shimomura H Arch Oral Biol; 2002 Aug; 47(8):567-76. PubMed ID: 12221013 [TBL] [Abstract][Full Text] [Related]
4. Characterization of 3',5' cyclic nucleotide phosphodiesterase activity in Y79 retinoblastoma cells: absence of functional PDE6. White JB; Thompson WJ; Pittler SJ Mol Vis; 2004 Oct; 10():738-49. PubMed ID: 15480303 [TBL] [Abstract][Full Text] [Related]
5. "cAMP-specific" phosphodiesterase contributes to cGMP degradation in cerebellar cells exposed to nitric oxide. Bellamy TC; Garthwaite J Mol Pharmacol; 2001 Jan; 59(1):54-61. PubMed ID: 11125024 [TBL] [Abstract][Full Text] [Related]
6. Pig aortic endothelial-cell cyclic nucleotide phosphodiesterases. Use of phosphodiesterase inhibitors to evaluate their roles in regulating cyclic nucleotide levels in intact cells. Souness JE; Diocee BK; Martin W; Moodie SA Biochem J; 1990 Feb; 266(1):127-32. PubMed ID: 2155604 [TBL] [Abstract][Full Text] [Related]
8. Evidence for the activity of five adenosine-3',5'-monophosphate-degrading phosphodiesterase isozymes in the adult rat neocortex. Sutor B; Mantell K; Bacher B Neurosci Lett; 1998 Aug; 252(1):57-60. PubMed ID: 9756358 [TBL] [Abstract][Full Text] [Related]
9. Effects of rolipram, pimobendan and zaprinast on ischaemia-induced dysrhythmias and on ventricular cyclic nucleotide content in the anaesthetized rat. Carceles MD; Aleixandre F; Fuente T; López-Vidal J; Laorden ML Eur J Anaesthesiol; 2003 Mar; 20(3):205-11. PubMed ID: 12650491 [TBL] [Abstract][Full Text] [Related]
10. The role of phosphodiesterase isoforms 2, 5, and 9 in the regulation of NO-dependent and NO-independent cGMP production in the rat cervical spinal cord. de Vente J; Markerink-van Ittersum M; Vles JS J Chem Neuroanat; 2006 Jun; 31(4):275-303. PubMed ID: 16621445 [TBL] [Abstract][Full Text] [Related]
11. cAMP-dependent induction of PDE5 expression in murine neuroblastoma cell differentiation. Giordano D; Giorgi M; Sette C; Biagioni S; Augusti-Tocco G FEBS Lett; 1999 Mar; 446(2-3):218-22. PubMed ID: 10100844 [TBL] [Abstract][Full Text] [Related]
12. Inhibitory effects of flavonoids on phosphodiesterase isozymes from guinea pig and their structure-activity relationships. Ko WC; Shih CM; Lai YH; Chen JH; Huang HL Biochem Pharmacol; 2004 Nov; 68(10):2087-94. PubMed ID: 15476679 [TBL] [Abstract][Full Text] [Related]
13. Resolution of soluble cyclic nucleotide phosphodiesterase isoenzymes, from liver and hepatocytes, identifies a novel IBMX-insensitive form. Lavan BE; Lakey T; Houslay MD Biochem Pharmacol; 1989 Nov; 38(22):4123-36. PubMed ID: 2480793 [TBL] [Abstract][Full Text] [Related]
15. Time-dependent involvement of cAMP and cGMP in consolidation of object memory: studies using selective phosphodiesterase type 2, 4 and 5 inhibitors. Rutten K; Prickaerts J; Hendrix M; van der Staay FJ; Sik A; Blokland A Eur J Pharmacol; 2007 Mar; 558(1-3):107-12. PubMed ID: 17207788 [TBL] [Abstract][Full Text] [Related]
16. Hydrolysis of N-methyl-D-aspartate receptor-stimulated cAMP and cGMP by PDE4 and PDE2 phosphodiesterases in primary neuronal cultures of rat cerebral cortex and hippocampus. Suvarna NU; O'Donnell JM J Pharmacol Exp Ther; 2002 Jul; 302(1):249-56. PubMed ID: 12065724 [TBL] [Abstract][Full Text] [Related]
17. Characterization of phosphodiesterase 4 in guinea-pig macrophages: multiple activities, association states and sensitivity to selective inhibitors. Kelly JJ; Barnes PJ; Giembycz MA Br J Pharmacol; 1998 May; 124(1):129-40. PubMed ID: 9630352 [TBL] [Abstract][Full Text] [Related]
18. Heat-stable low molecular weight form of phosphodiesterases from bovine pineal gland. Sankaran K; Hanbauer I; Lovenberg W Proc Natl Acad Sci U S A; 1978 Jul; 75(7):3188-91. PubMed ID: 210451 [TBL] [Abstract][Full Text] [Related]
19. Activity of cyclic AMP phosphodiesterases and adenylyl cyclase in peripheral nerve after crush and permanent transection injuries. Walikonis RS; Poduslo JF J Biol Chem; 1998 Apr; 273(15):9070-7. PubMed ID: 9535895 [TBL] [Abstract][Full Text] [Related]
20. Rapid regulation of PDE-2 and PDE-4 cyclic AMP phosphodiesterase activity following ligation of the T cell antigen receptor on thymocytes: analysis using the selective inhibitors erythro-9-(2-hydroxy-3-nonyl)-adenine (EHNA) and rolipram. Michie AM; Lobban M; Müller T; Harnett MM; Houslay MD Cell Signal; 1996 Feb; 8(2):97-110. PubMed ID: 8730511 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]