These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 9253822)
1. Electromagnetic hydrophone for pressure determination of shock wave pulses. Etienne J; Filipczyński L; Kujawska T; Zienkiewicz B Ultrasound Med Biol; 1997; 23(5):747-54. PubMed ID: 9253822 [TBL] [Abstract][Full Text] [Related]
2. Single-shot measurements of the acoustic field of an electrohydraulic lithotripter using a hydrophone array. Alibakhshi MA; Kracht JM; Cleveland RO; Filoux E; Ketterling JA J Acoust Soc Am; 2013 May; 133(5):3176-85. PubMed ID: 23654419 [TBL] [Abstract][Full Text] [Related]
3. Acoustic performance and clinical use of a fibreoptic hydrophone. Coleman AJ; Draguioti E; Tiptaf R; Shotri N; Saunders JE Ultrasound Med Biol; 1998 Jan; 24(1):143-51. PubMed ID: 9483782 [TBL] [Abstract][Full Text] [Related]
4. Effect of the body wall on lithotripter shock waves. Li G; McAteer JA; Williams JC; Berwick ZC J Endourol; 2014 Apr; 28(4):446-52. PubMed ID: 24308532 [TBL] [Abstract][Full Text] [Related]
5. Characterization of the shock pulse-induced cavitation bubble activities recorded by an optical fiber hydrophone. Kang G; Cho SC; Coleman AJ; Choi MJ J Acoust Soc Am; 2014 Mar; 135(3):1139-48. PubMed ID: 24606257 [TBL] [Abstract][Full Text] [Related]
6. Acoustic field characterization of the Duolith: measurements and modeling of a clinical shock wave therapy device. Perez C; Chen H; Matula TJ; Karzova M; Khokhlova VA J Acoust Soc Am; 2013 Aug; 134(2):1663-74. PubMed ID: 23927207 [TBL] [Abstract][Full Text] [Related]
7. A novel method to control P+/P- ratio of the shock wave pulses used in the extracorporeal piezoelectric lithotripsy (EPL). Lewin PA; Chapelon JY; Mestas JL; Birer A; Cathignol D Ultrasound Med Biol; 1990; 16(5):473-88. PubMed ID: 2238254 [TBL] [Abstract][Full Text] [Related]
8. In vivo pressure measurements of lithotripsy shock waves in pigs. Cleveland RO; Lifshitz DA; Connors BA; Evan AP; Willis LR; Crum LA Ultrasound Med Biol; 1998 Feb; 24(2):293-306. PubMed ID: 9550188 [TBL] [Abstract][Full Text] [Related]
9. A comparison of light spot hydrophone and fiber optic probe hydrophone for lithotripter field characterization. Smith N; Sankin GN; Simmons WN; Nanke R; Fehre J; Zhong P Rev Sci Instrum; 2012 Jan; 83(1):014301. PubMed ID: 22299970 [TBL] [Abstract][Full Text] [Related]
10. Measurement of high intensity focused ultrasound fields by a fiber optic probe hydrophone. Zhou Y; Zhai L; Simmons R; Zhong P J Acoust Soc Am; 2006 Aug; 120(2):676-85. PubMed ID: 16938956 [TBL] [Abstract][Full Text] [Related]
11. The influence of finite aperture and frequency response of ultrasonic hydrophone probes on the determination of acoustic output. Radulescu EG; Lewin PA; Wójcik J; Nowicki A; Berger WA Ultrasonics; 2004 Apr; 42(1-9):367-72. PubMed ID: 15047313 [TBL] [Abstract][Full Text] [Related]
12. A survey of the acoustic output of commercial extracorporeal shock wave lithotripters. Coleman AJ; Saunders JE Ultrasound Med Biol; 1989; 15(3):213-27. PubMed ID: 2741250 [TBL] [Abstract][Full Text] [Related]
13. Membrane hydrophone measurement and numerical simulation of HIFU fields up to developed shock regimes. Bessonova OV; Wilkens V IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Feb; 60(2):290-300. PubMed ID: 23357903 [TBL] [Abstract][Full Text] [Related]
14. Improved measurement of acoustic output using complex deconvolution of hydrophone sensitivity. Wear KA; Gammell PM; Maruvada S; Liu Y; Harris GR IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jan; 61(1):62-75. PubMed ID: 24402896 [TBL] [Abstract][Full Text] [Related]
15. Shifting the Split Reflectors to Enhance Stone Fragmentation of Shock Wave Lithotripsy. Wang JC; Zhou Y Ultrasound Med Biol; 2016 Aug; 42(8):1876-89. PubMed ID: 27166016 [TBL] [Abstract][Full Text] [Related]
16. Acoustic field characterization of a clinical magnetic resonance-guided high-intensity focused ultrasound system inside the magnet bore. Kothapalli SVVN; Altman MB; Partanen A; Wan L; Gach HM; Straube W; Hallahan DE; Chen H Med Phys; 2017 Sep; 44(9):4890-4899. PubMed ID: 28626862 [TBL] [Abstract][Full Text] [Related]
17. Pressure waveforms generated by a Dornier extra-corporeal shock-wave lithotripter. Coleman AJ; Saunders JE; Preston RC; Bacon DR Ultrasound Med Biol; 1987 Oct; 13(10):651-7. PubMed ID: 3686729 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of the shock-wave pattern for endoscopic electrohydraulic lithotripsy. Vorreuther R; Engelmann Y Surg Endosc; 1995 Jan; 9(1):42-5. PubMed ID: 7725212 [TBL] [Abstract][Full Text] [Related]
19. An experimental shock wave generator for lithotripsy studies. Coleman AJ; Saunders JE; Choi MJ Phys Med Biol; 1989 Nov; 34(11):1733-42. PubMed ID: 2587631 [TBL] [Abstract][Full Text] [Related]
20. Lithotripsy pulse measurement errors due to nonideal hydrophone and amplifier frequency responses. Harris GR IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(2):256-61. PubMed ID: 18263144 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]