These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 9254608)
1. Phosphorylation of serine 392 stabilizes the tetramer formation of tumor suppressor protein p53. Sakaguchi K; Sakamoto H; Lewis MS; Anderson CW; Erickson JW; Appella E; Xie D Biochemistry; 1997 Aug; 36(33):10117-24. PubMed ID: 9254608 [TBL] [Abstract][Full Text] [Related]
2. Effect of phosphorylation on tetramerization of the tumor suppressor protein p53. Sakaguchi K; Sakamoto H; Xie D; Erickson JW; Lewis MS; Anderson CW; Appella E J Protein Chem; 1997 Jul; 16(5):553-6. PubMed ID: 9246643 [TBL] [Abstract][Full Text] [Related]
3. Signaling to p53: breaking the posttranslational modification code. Appella E; Anderson CW Pathol Biol (Paris); 2000 Apr; 48(3):227-45. PubMed ID: 10858956 [TBL] [Abstract][Full Text] [Related]
4. Frequent phosphorylation at serine 392 in overexpressed p53 protein due to missense mutation in carcinoma of the urinary tract. Furihata M; Kurabayashl A; Matsumoto M; Sonobe H; Ohtsuki Y; Terao N; Kuwahara M; Shuin T J Pathol; 2002 May; 197(1):82-8. PubMed ID: 12081208 [TBL] [Abstract][Full Text] [Related]
5. Activation of p53 transcriptional activity requires ATM's kinase domain and multiple N-terminal serine residues of p53. Turenne GA; Paul P; Laflair L; Price BD Oncogene; 2001 Aug; 20(37):5100-10. PubMed ID: 11526498 [TBL] [Abstract][Full Text] [Related]
6. The regulatory domain stabilizes the p53 tetramer by intersubunit contacts with the DNA binding domain. Retzlaff M; Rohrberg J; Küpper NJ; Lagleder S; Bepperling A; Manzenrieder F; Peschek J; Kessler H; Buchner J J Mol Biol; 2013 Jan; 425(1):144-55. PubMed ID: 23103206 [TBL] [Abstract][Full Text] [Related]
7. Phosphorylation of the C-terminal sites of human p53 reduces non-sequence-specific DNA binding as modeled with synthetic peptides. Hoffmann R; Craik DJ; Pierens G; Bolger RE; Otvos L Biochemistry; 1998 Sep; 37(39):13755-64. PubMed ID: 9753464 [TBL] [Abstract][Full Text] [Related]
8. Phosphorylation of p53 at serine 37 is important for transcriptional activity and regulation in response to DNA damage. Dohoney KM; Guillerm C; Whiteford C; Elbi C; Lambert PF; Hager GL; Brady JN Oncogene; 2004 Jan; 23(1):49-57. PubMed ID: 14712210 [TBL] [Abstract][Full Text] [Related]
9. Tandem dimerization of the human p53 tetramerization domain stabilizes a primary dimer intermediate and dramatically enhances its oligomeric stability. Poon GM; Brokx RD; Sung M; Gariépy J J Mol Biol; 2007 Jan; 365(4):1217-31. PubMed ID: 17113101 [TBL] [Abstract][Full Text] [Related]
10. DNA damage triggers DRB-resistant phosphorylation of human p53 at the CK2 site. Blaydes JP; Hupp TR Oncogene; 1998 Aug; 17(8):1045-52. PubMed ID: 9747884 [TBL] [Abstract][Full Text] [Related]
11. Cognate DNA stabilizes the tumor suppressor p53 and prevents misfolding and aggregation. Ishimaru D; Ano Bom AP; Lima LM; Quesado PA; Oyama MF; de Moura Gallo CV; Cordeiro Y; Silva JL Biochemistry; 2009 Jul; 48(26):6126-35. PubMed ID: 19505151 [TBL] [Abstract][Full Text] [Related]
12. Advantage of a baculovirus expression system for protein-protein interaction studies. Involvement of posttranslational phosphorylation in the interaction between wt p53 protein and poly(ADP-ribose) polymerase-1. Schmid G; Wojciechowski J; Wesierska-Gadek J Acta Biochim Pol; 2005; 52(3):713-9. PubMed ID: 16082409 [TBL] [Abstract][Full Text] [Related]
13. Phosphorylation state of tumor-suppressor gene p53 product overexpressed in skin tumors. Matsumoto M; Furihata M; Kurabayashi A; Ohtsuki Y Oncol Rep; 2004 Nov; 12(5):1039-43. PubMed ID: 15492790 [TBL] [Abstract][Full Text] [Related]
14. Synthesis of complex phosphopeptides as mimics of p53 functional domains. Varadi G; Otvos L J Pept Sci; 2002 Nov; 8(11):621-33. PubMed ID: 12487430 [TBL] [Abstract][Full Text] [Related]
15. Phosphorylation regulates the interaction and complex formation between wt p53 protein and PARP-1. Wesierska-Gadek J; Wojciechowski J; Schmid G J Cell Biochem; 2003 Aug; 89(6):1260-84. PubMed ID: 12898523 [TBL] [Abstract][Full Text] [Related]
16. The double-stranded RNA activated protein kinase PKR physically associates with the tumor suppressor p53 protein and phosphorylates human p53 on serine 392 in vitro. Cuddihy AR; Wong AH; Tam NW; Li S; Koromilas AE Oncogene; 1999 Apr; 18(17):2690-702. PubMed ID: 10348343 [TBL] [Abstract][Full Text] [Related]
17. Modulation of binding of DNA to the C-terminal domain of p53 by acetylation. Friedler A; Veprintsev DB; Freund SM; von Glos KI; Fersht AR Structure; 2005 Apr; 13(4):629-36. PubMed ID: 15837201 [TBL] [Abstract][Full Text] [Related]
18. Structure of the human p53 core domain in the absence of DNA. Wang Y; Rosengarth A; Luecke H Acta Crystallogr D Biol Crystallogr; 2007 Mar; 63(Pt 3):276-81. PubMed ID: 17327663 [TBL] [Abstract][Full Text] [Related]
19. Chemical synthesis of phosphorylated peptides of the carboxy-terminal domain of human p53 by a segment condensation method. Sakamoto H; Kodama H; Higashimoto Y; Kondo M; Lewis MS; Anderson CW; Appella E; Sakaguchi K Int J Pept Protein Res; 1996 Nov; 48(5):429-42. PubMed ID: 8956076 [TBL] [Abstract][Full Text] [Related]
20. Enhancement of transcriptional activity of mutant p53 tumor suppressor protein through stabilization of tetramer formation by calix[6]arene derivatives. Kamada R; Yoshino W; Nomura T; Chuman Y; Imagawa T; Suzuki T; Sakaguchi K Bioorg Med Chem Lett; 2010 Aug; 20(15):4412-5. PubMed ID: 20605095 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]