BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 9254666)

  • 1. Neural agrin induces ectopic postsynaptic specializations in innervated muscle fibers.
    Meier T; Hauser DM; Chiquet M; Landmann L; Ruegg MA; Brenner HR
    J Neurosci; 1997 Sep; 17(17):6534-44. PubMed ID: 9254666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constitutively active MuSK is clustered in the absence of agrin and induces ectopic postsynaptic-like membranes in skeletal muscle fibers.
    Jones G; Moore C; Hashemolhosseini S; Brenner HR
    J Neurosci; 1999 May; 19(9):3376-83. PubMed ID: 10212297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction by agrin of ectopic and functional postsynaptic-like membrane in innervated muscle.
    Jones G; Meier T; Lichtsteiner M; Witzemann V; Sakmann B; Brenner HR
    Proc Natl Acad Sci U S A; 1997 Mar; 94(6):2654-9. PubMed ID: 9122251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of rapsyn and agrin in interaction of postsynaptic proteins with acetylcholine receptors.
    Fuhrer C; Gautam M; Sugiyama JE; Hall ZW
    J Neurosci; 1999 Aug; 19(15):6405-16. PubMed ID: 10414969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural agrin increases postsynaptic ACh receptor packing by elevating rapsyn protein at the mouse neuromuscular synapse.
    Brockhausen J; Cole RN; Gervásio OL; Ngo ST; Noakes PG; Phillips WD
    Dev Neurobiol; 2008 Aug; 68(9):1153-69. PubMed ID: 18506821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tyrosine phosphatases such as SHP-2 act in a balance with Src-family kinases in stabilization of postsynaptic clusters of acetylcholine receptors.
    Camilleri AA; Willmann R; Sadasivam G; Lin S; Rüegg MA; Gesemann M; Fuhrer C
    BMC Neurosci; 2007 Jul; 8():46. PubMed ID: 17605785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A minigene of neural agrin encoding the laminin-binding and acetylcholine receptor-aggregating domains is sufficient to induce postsynaptic differentiation in muscle fibres.
    Meier T; Marangi PA; Moll J; Hauser DM; Brenner HR; Ruegg MA
    Eur J Neurosci; 1998 Oct; 10(10):3141-52. PubMed ID: 9786208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of the neuromuscular junction.
    Witzemann V
    Cell Tissue Res; 2006 Nov; 326(2):263-71. PubMed ID: 16819627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuromuscular synapse formation in mice lacking motor neuron- and skeletal muscle-derived Neuregulin-1.
    Jaworski A; Burden SJ
    J Neurosci; 2006 Jan; 26(2):655-61. PubMed ID: 16407563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurotrophins regulate agrin-induced postsynaptic differentiation.
    Wells DG; McKechnie BA; Kelkar S; Fallon JR
    Proc Natl Acad Sci U S A; 1999 Feb; 96(3):1112-7. PubMed ID: 9927702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Ets transcription factor GABP is required for postsynaptic differentiation in vivo.
    Briguet A; Ruegg MA
    J Neurosci; 2000 Aug; 20(16):5989-96. PubMed ID: 10934247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle activity and muscle agrin regulate the organization of cytoskeletal proteins and attached acetylcholine receptor (AchR) aggregates in skeletal muscle fibers.
    Bezakova G; Lømo T
    J Cell Biol; 2001 Jun; 153(7):1453-63. PubMed ID: 11425875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A role for acetylcholine receptors in their own aggregation on muscle cells.
    Milholland RB; Gordon H
    Dev Neurobiol; 2007 Jul; 67(8):999-1008. PubMed ID: 17565711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sialic acid inhibits agrin signaling in C2 myotubes.
    Grow WA; Gordon H
    Cell Tissue Res; 2000 Feb; 299(2):273-9. PubMed ID: 10741468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of the size and distribution of agrin-induced postsynaptic-like apparatus in adult skeletal muscle by electrical muscle activity.
    Mathiesen I; Rimer M; Ashtari O; Cohen I; McMahan UJ; Lømo T
    Mol Cell Neurosci; 1999 Mar; 13(3):207-17. PubMed ID: 10328882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Agrin can mediate acetylcholine receptor gene expression in muscle by aggregation of muscle-derived neuregulins.
    Meier T; Masciulli F; Moore C; Schoumacher F; Eppenberger U; Denzer AJ; Jones G; Brenner HR
    J Cell Biol; 1998 May; 141(3):715-26. PubMed ID: 9566971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of agrin on the distribution of acetylcholine receptors and sodium channels on adult skeletal muscle fibers in culture.
    Lupa MT; Caldwell JH
    J Cell Biol; 1991 Nov; 115(3):765-78. PubMed ID: 1655812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. gamma-AChR/epsilon-AChR switch at agrin-induced postsynaptic-like apparatus in skeletal muscle.
    Rimer M; Mathiesen I; Lømo T; McMahan UJ
    Mol Cell Neurosci; 1997; 9(4):254-63. PubMed ID: 9268504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Agrin-induced postsynaptic-like apparatus in skeletal muscle fibers in vivo.
    Cohen I; Rimer M; Lømo T; McMahan UJ
    Mol Cell Neurosci; 1997; 9(4):237-53. PubMed ID: 9268503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laminin-induced acetylcholine receptor clustering: an alternative pathway.
    Sugiyama JE; Glass DJ; Yancopoulos GD; Hall ZW
    J Cell Biol; 1997 Oct; 139(1):181-91. PubMed ID: 9314538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.