These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 9254717)

  • 1. pH dependence of self-splicing by the group IA2 intron in a pre-mRNA derived from the nrdB gene of bacteriophage T4.
    Sjögren AS; Strömberg R; Sjöberg BM
    Nucleic Acids Res; 1997 Sep; 25(17):3543-9. PubMed ID: 9254717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal ion interaction with cosubstrate in self-splicing of group I introns.
    Sjögren AS; Pettersson E; Sjöberg BM; Strömberg R
    Nucleic Acids Res; 1997 Feb; 25(3):648-53. PubMed ID: 9016608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 2'-Amino-2'-deoxyguanosine is a cofactor for self-splicing in group I catalytic RNA.
    Strömberg R; Hahne S; Sjögren AS; Sjöberg BM
    Biochem Biophys Res Commun; 1992 Mar; 183(2):842-8. PubMed ID: 1550590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-splicing of the bacteriophage T4 group I introns requires efficient translation of the pre-mRNA in vivo and correlates with the growth state of the infected bacterium.
    Sandegren L; Sjöberg BM
    J Bacteriol; 2007 Feb; 189(3):980-90. PubMed ID: 17122344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional and sequence analysis of splicing defective nrdB mutants of bacteriophage T4 reveal new bases and a new sub-domain required for group I intron self-splicing.
    Lal SK; Hall DH
    Biochim Biophys Acta; 1997 Jan; 1350(1):89-97. PubMed ID: 9003462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A unique group of self-splicing introns in bacteriophage T4.
    Khan AU; Ajamaluddin M; Ahmad M
    Indian J Biochem Biophys; 2001 Oct; 38(5):289-93. PubMed ID: 11886074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variable occurrence of the nrdB intron in the T-even phages suggests intron mobility.
    Pedersen-Lane J; Belfort M
    Science; 1987 Jul; 237(4811):182-4. PubMed ID: 3037701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Restoration of mRNA splicing by a second-site intragenic suppressor in the T4 ribonucleotide reductase (small subunit) self-splicing intron.
    Khan AU; Ahmad M; Lal SK
    Biochem Biophys Res Commun; 2000 Feb; 268(2):359-64. PubMed ID: 10679208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and characterization of EMS induced splicing defective point mutations within the intron of the nrdB gene of bacteriophage T4.
    Khan AU; Lal SK; Ahmad M
    Biochem Biophys Res Commun; 1998 Jan; 242(1):10-5. PubMed ID: 9439601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Escherichia coli proteins, including ribosomal protein S12, facilitate in vitro splicing of phage T4 introns by acting as RNA chaperones.
    Coetzee T; Herschlag D; Belfort M
    Genes Dev; 1994 Jul; 8(13):1575-88. PubMed ID: 7958841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novobiocin inhibits the self-splicing of the primary transcripts of T4 phage thymidylate synthase gene.
    Jung WS; Shin S; Park IK
    Mol Cell Biochem; 2008 Jul; 314(1-2):143-9. PubMed ID: 18443742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacteriophage T4 ribonucleoside diphosphate reductase: on the defect causing decreased formation of the beta 93(2) subunit encoded by the nrdB93 mutant gene.
    Hilfinger JM; He P
    Gene; 1994 May; 142(1):55-60. PubMed ID: 8181757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NAD+ inhibits the self-splicing of the group I intron.
    Park IK; Kim JY
    Biochem Biophys Res Commun; 2001 Feb; 281(1):206-11. PubMed ID: 11178981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple self-splicing introns in bacteriophage T4: evidence from autocatalytic GTP labeling of RNA in vitro.
    Gott JM; Shub DA; Belfort M
    Cell; 1986 Oct; 47(1):81-7. PubMed ID: 3757035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel approach for isolation and mapping of intron mutations in a ribonucleotide reductase encoding gene (nrdB) of bacteriophage T4 using the white halo plaque phenotype.
    Lal SK; Hall DH
    Biochem Biophys Res Commun; 1993 Oct; 196(2):943-9. PubMed ID: 8240371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A non-directed, hydroxylamine-generated suppressor mutation in the P3 pairing region of the bacteriophage T4 td intron partially restores self-splicing capability.
    Brown MD; DeYoung KL; Hall DH
    Mol Microbiol; 1994 Jul; 13(1):89-95. PubMed ID: 7984096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The environment of two metal ions surrounding the splice site of a group I intron.
    Streicher B; Westhof E; Schroeder R
    EMBO J; 1996 May; 15(10):2556-64. PubMed ID: 8665863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The coenzyme thiamine pyrophosphate inhibits the self-splicing of the group I intron.
    Ahn SJ; Park IK
    Int J Biochem Cell Biol; 2003 Feb; 35(2):157-67. PubMed ID: 12479866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery of selective, small-molecule inhibitors of RNA complexes--II. Self-splicing group I intron ribozyme.
    Mei HY; Cui M; Lemrow SM; Czarnik AW
    Bioorg Med Chem; 1997 Jun; 5(6):1185-95. PubMed ID: 9222512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unexpected metal ion requirements specific for catalysis of the branching reaction in a group II intron.
    Dème E; Nolte A; Jacquier A
    Biochemistry; 1999 Mar; 38(10):3157-67. PubMed ID: 10074371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.