These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 9254984)
1. The effects of inhomogeneities and anisotropies on electrocardiographic fields: a 3-D finite-element study. Klepfer RN; Johnson CR; Macleod RS IEEE Trans Biomed Eng; 1997 Aug; 44(8):706-19. PubMed ID: 9254984 [TBL] [Abstract][Full Text] [Related]
2. The effect of torso impedance on epicardial and body surface potentials: a modeling study. Buist ML; Pullan AJ IEEE Trans Biomed Eng; 2003 Jul; 50(7):816-24. PubMed ID: 12848349 [TBL] [Abstract][Full Text] [Related]
3. Ranking the influence of tissue conductivities on forward-calculated ECGs. Keller DU; Weber FM; Seemann G; Dössel O IEEE Trans Biomed Eng; 2010 Jul; 57(7):1568-76. PubMed ID: 20659824 [TBL] [Abstract][Full Text] [Related]
4. Volume conductor effects involved in the genesis of the P wave. van Dam PM; van Oosterom A Europace; 2005 Sep; 7 Suppl 2():30-8. PubMed ID: 16102501 [TBL] [Abstract][Full Text] [Related]
5. Application of stochastic finite element methods to study the sensitivity of ECG forward modeling to organ conductivity. Geneser SE; Kirby RM; MacLeod RS IEEE Trans Biomed Eng; 2008 Jan; 55(1):31-40. PubMed ID: 18232344 [TBL] [Abstract][Full Text] [Related]
6. Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling. Wolters CH; Anwander A; Tricoche X; Weinstein D; Koch MA; MacLeod RS Neuroimage; 2006 Apr; 30(3):813-26. PubMed ID: 16364662 [TBL] [Abstract][Full Text] [Related]
7. Dipole estimation errors due to differences in modeling anisotropic conductivities in realistic head models for EEG source analysis. Hallez H; Vanrumste B; Van Hese P; Delputte S; Lemahieu I Phys Med Biol; 2008 Apr; 53(7):1877-94. PubMed ID: 18364544 [TBL] [Abstract][Full Text] [Related]
8. 3-D electrical impedance tomography for piecewise constant domains with known internal boundaries. Babaeizadeh S; Brooks DH; Isaacson D IEEE Trans Biomed Eng; 2007 Jan; 54(1):2-10. PubMed ID: 17260850 [TBL] [Abstract][Full Text] [Related]
9. The effect of conductivity values on ST segment shift in subendocardial ischaemia. Johnston PR; Kilpatrick D IEEE Trans Biomed Eng; 2003 Feb; 50(2):150-8. PubMed ID: 12665028 [TBL] [Abstract][Full Text] [Related]
10. Comparative simulation of excitation and body surface electrocardiogram with isotropic and anisotropic computer heart models. Wei D; Okazaki O; Harumi K; Harasawa E; Hosaka H IEEE Trans Biomed Eng; 1995 Apr; 42(4):343-57. PubMed ID: 7729834 [TBL] [Abstract][Full Text] [Related]
11. The inverse problem in electrocardiography: solutions in terms of epicardial potentials. Rudy Y; Messinger-Rapport BJ Crit Rev Biomed Eng; 1988; 16(3):215-68. PubMed ID: 3064971 [TBL] [Abstract][Full Text] [Related]
12. An assessment of variable thickness and fiber orientation of the skeletal muscle layer on electrocardiographic calculations. Stanley PC; Pilkington TC; Morrow MN; Ideker RE IEEE Trans Biomed Eng; 1991 Nov; 38(11):1069-76. PubMed ID: 1748441 [TBL] [Abstract][Full Text] [Related]
13. The transfer matrix for epicardial potential in a piece-wise homogeneous thorax model: the boundary element formulation. Stenroos M Phys Med Biol; 2009 Sep; 54(18):5443-55. PubMed ID: 19700818 [TBL] [Abstract][Full Text] [Related]
14. Applicability of the single equivalent moving dipole model in an infinite homogeneous medium to identify cardiac electrical sources: a computer simulation study in a realistic anatomic geometry torso model. Fukuoka Y; Oostendorp TF; Sherman DA; Armoundas AA IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2436-44. PubMed ID: 17153200 [TBL] [Abstract][Full Text] [Related]
15. The effects of errors in assumed conductivities and geometry on numerical solutions to the inverse problem of electrocardiography. Throne RD; Olson LG IEEE Trans Biomed Eng; 1995 Dec; 42(12):1192-200. PubMed ID: 8550061 [TBL] [Abstract][Full Text] [Related]
16. Effects of material properties and geometry on electrocardiographic forward simulations. Bradley CP; Pullan AJ; Hunter PJ Ann Biomed Eng; 2000 Jul; 28(7):721-41. PubMed ID: 11016411 [TBL] [Abstract][Full Text] [Related]
17. Anatomically constrained electrical impedance tomography for three-dimensional anisotropic bodies. Glidewell ME; Ng KT IEEE Trans Med Imaging; 1997 Oct; 16(5):572-80. PubMed ID: 9368112 [TBL] [Abstract][Full Text] [Related]
18. [Effects of human thorax tissues on conduction of electrocardiogram and body surface potential]. He W; Wu Q; Liu L; Yang H; Liu H Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 1999 Dec; 16(4):471-6. PubMed ID: 12552726 [TBL] [Abstract][Full Text] [Related]
19. Solving the ECG forward problem by means of a meshless finite element method. Li ZS; Zhu SA; He B Phys Med Biol; 2007 Jul; 52(13):N287-96. PubMed ID: 17664567 [TBL] [Abstract][Full Text] [Related]
20. Accuracy of a single equivalent moving dipole model in a realistic anatomic geometry torso model. Fukuoka Y; Armoundas AA; Oostendorp TF; Cohen RJ Comput Cardiol; 2000; 27():439-42. PubMed ID: 14632014 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]