BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 9255405)

  • 1. Beta-adrenergic-induced calcium efflux in rat parotid gland. Is mitochondrial Na+/Ca2+ exchange involved?
    Dreux C; Huleux C; Eboué D; Rossignol B
    Arch Physiol Biochem; 1997 Apr; 105(2):197-202. PubMed ID: 9255405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of calcium efflux from isolated rat parotid cells.
    Butcher FR
    Biochim Biophys Acta; 1980 Jun; 630(2):254-60. PubMed ID: 6155945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium metabolism and amylase release in rat parotid acinar cells.
    Kanagasuntheram P; Randle PJ
    Biochem J; 1976 Dec; 160(3):547-64. PubMed ID: 189753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective effects of diltiazem, a benzothiazepine calcium channel blocker, and diazepam, and other benzodiazepines on the Na+/Ca2+ exchange carrier system of heart and brain mitochondria.
    Matlib MA; Schwartz A
    Life Sci; 1983 Jun; 32(25):2837-42. PubMed ID: 6406780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of action of extracellular calcium on isoprenaline-evoked amylase secretion from isolated rat parotid glands.
    Argent BE; Arkle S
    J Physiol; 1985 Dec; 369():337-53. PubMed ID: 2419548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Agonist-induced activation of Na+/H+ exchange in rat parotid acinar cells is dependent on calcium but not on protein kinase C.
    Manganel M; Turner RJ
    J Biol Chem; 1990 Mar; 265(8):4284-9. PubMed ID: 2155219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Agonist-induced activation of Na+/H+ exchange in rat parotid acinar cells.
    Manganel M; Turner RJ
    J Membr Biol; 1989 Oct; 111(2):191-8. PubMed ID: 2559203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of extracellular ATP on ion transport systems and [Ca2+]i in rat parotid acinar cells. Comparison with the muscarinic agonist carbachol.
    Soltoff SP; McMillian MK; Cragoe EJ; Cantley LC; Talamo BR
    J Gen Physiol; 1990 Feb; 95(2):319-46. PubMed ID: 1689766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the relation of calcium channel blockers to rat parotid and submandibular glands function in vivo.
    Dehpour AR; Ghafourifar P; Massoudi S; Abdollahi M; Mousavizadeh K
    Gen Pharmacol; 1995 May; 26(3):619-22. PubMed ID: 7540580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the mechanism of rebounding of calcium in liver mitochondria.
    Saris NE
    Biol Chem; 1997 Oct; 378(10):1163-6. PubMed ID: 9372185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutamate-induced destabilization of intracellular calcium concentration homeostasis in cultured cerebellar granule cells: role of mitochondria in calcium buffering.
    Kiedrowski L; Costa E
    Mol Pharmacol; 1995 Jan; 47(1):140-7. PubMed ID: 7838122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial modulation of Ca2+ sparks and transient KCa currents in smooth muscle cells of rat cerebral arteries.
    Cheranov SY; Jaggar JH
    J Physiol; 2004 May; 556(Pt 3):755-71. PubMed ID: 14766935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitory effect on calcium channel blockers on alpha -adrenergic activation of glycogenolysis and calcium efflux in perfused rat liver.
    Kimura S; Koide Y; Tada R; Abe K; Ogata E
    Endocrinol Jpn; 1981 Feb; 28(1):69-78. PubMed ID: 7250070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of sodium-calcium exchange in regulation of intracellular calcium in nerve terminals.
    Sanchez-Armass S; Blaustein MP
    Am J Physiol; 1987 Jun; 252(6 Pt 1):C595-603. PubMed ID: 3109248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The low-affinity dihydropyridine receptor and Na+/Ca2+ exchanger are associated in adrenal medullary mitochondria.
    Palmero M; Gutierrez LM; Hidalgo MJ; Reig JA; Ballesta JJ; Viniegra S
    Biochem Pharmacol; 1995 Sep; 50(6):879-83. PubMed ID: 7575651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feedback inhibition of sodium/calcium exchange by mitochondrial calcium accumulation.
    Opuni K; Reeves JP
    J Biol Chem; 2000 Jul; 275(28):21549-54. PubMed ID: 10801871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium sequestering ability of mitochondria modulates influx of calcium through glutamate receptor channel.
    Kannurpatti SS; Joshi PG; Joshi NB
    Neurochem Res; 2000 Dec; 25(12):1527-36. PubMed ID: 11152381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium transport mechanisms in basolateral plasma membrane-enriched vesicles from rat parotid gland.
    Takuma T; Kuyatt BL; Baum BJ
    Biochem J; 1985 Apr; 227(1):239-45. PubMed ID: 3994684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic properties of the sodium-calcium exchanger in rat brain synaptosomes.
    Fontana G; Rogowski RS; Blaustein MP
    J Physiol; 1995 Jun; 485 ( Pt 2)(Pt 2):349-64. PubMed ID: 7666363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfilaments and cellular signal transduction: effect of cytochalasin D on the production of cAMP, inositol phosphates, and on calcium movements in rat parotid glands.
    Huleux C; Dreux C; Imhoff V; Chambaut-Guerin AM; Rossignol B
    Biol Cell; 1989; 67(1):61-5. PubMed ID: 2557946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.