These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 9255685)

  • 1. Prevention of action potentials during extracellular electrical stimulation of long duration.
    Zhou X; Smith WM; Ideker RE
    J Cardiovasc Electrophysiol; 1997 Jul; 8(7):779-89. PubMed ID: 9255685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Responses of the transmembrane potential of myocardial cells during a shock.
    Zhou X; Rollins DL; Smith WM; Ideker RE
    J Cardiovasc Electrophysiol; 1995 Apr; 6(4):252-63. PubMed ID: 7647950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmembrane potential changes caused by shocks in guinea pig papillary muscle.
    Zhou X; Smith WM; Rollins DL; Ideker RE
    Am J Physiol; 1996 Dec; 271(6 Pt 2):H2536-46. PubMed ID: 8997315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial changes in the transmembrane potential during extracellular electric stimulation.
    Zhou X; Knisley SB; Smith WM; Rollins D; Pollard AE; Ideker RE
    Circ Res; 1998 Nov; 83(10):1003-14. PubMed ID: 9815148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High voltage shock induced cellular electrophysiological effects: transient refractoriness and bimodal changes in action potential duration.
    Li HG; Jones DL; Yee R; Klein GJ
    Pacing Clin Electrophysiol; 1995 Jun; 18(6):1225-35. PubMed ID: 7659576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prolongation and shortening of action potentials by electrical shocks in frog ventricular muscle.
    Knisley SB; Smith WM; Ideker RE
    Am J Physiol; 1994 Jun; 266(6 Pt 2):H2348-58. PubMed ID: 8023996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical transmembrane potential recordings during intracardiac defibrillation-strength shocks.
    Clark DM; Pollard AE; Ideker RE; Knisley SB
    J Interv Card Electrophysiol; 1999 Jul; 3(2):109-20. PubMed ID: 10387137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defibrillation shocks increase myocardial pacing threshold: an intracellular microelectrode study.
    Li HG; Jones DL; Yee R; Klein GJ
    Am J Physiol; 1991 Jun; 260(6 Pt 2):H1973-9. PubMed ID: 2058729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study.
    Jahnsen H; LlinĂ¡s R
    J Physiol; 1984 Apr; 349():205-26. PubMed ID: 6737292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical measurements of transmembrane potential changes during electric field stimulation of ventricular cells.
    Knisley SB; Blitchington TF; Hill BC; Grant AO; Smith WM; Pilkington TC; Ideker RE
    Circ Res; 1993 Feb; 72(2):255-70. PubMed ID: 8418982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical transmembrane potential measurements during defibrillation-strength shocks in perfused rabbit hearts.
    Zhou X; Ideker RE; Blitchington TF; Smith WM; Knisley SB
    Circ Res; 1995 Sep; 77(3):593-602. PubMed ID: 7641329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transmembrane potential changes caused by monophasic and biphasic shocks.
    Zhou X; Smith WM; Justice RK; Wayland JL; Ideker RE
    Am J Physiol; 1998 Nov; 275(5):H1798-807. PubMed ID: 9815088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrophysiological effects of SD-3212, a new antiarrhythmic agent with vasodilator action, on guinea-pig ventricular cells.
    Kodama I; Suzuki R; Maruyama K; Toyama J
    Br J Pharmacol; 1995 Jan; 114(2):503-9. PubMed ID: 7881749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A reevaluation of the critical membrane potential of the effective refractory period in guinea pig ventricular fibres.
    Li C; Zeng YM; Zhuang CX; Liu TF
    Sci China B; 1993 Jul; 36(7):835-44. PubMed ID: 8216744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversal of hypothermia-induced action potential lengthening by the KATP channel agonist bimakalim in isolated guinea pig ventricular muscle.
    Lathrop DA; Contney SJ; Bosnjak ZJ; Stowe DF
    Gen Pharmacol; 1998 Jul; 31(1):125-31. PubMed ID: 9595290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of spatial interactions in creating the dispersion of transmembrane potential by premature electric shocks.
    Krassowska W; Kumar MS
    Ann Biomed Eng; 1997; 25(6):949-63. PubMed ID: 9395041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prolongation of repolarization time by electric field stimulation with monophasic and biphasic shocks in open-chest dogs.
    Zhou XH; Knisley SB; Wolf PD; Rollins DL; Smith WM; Ideker RE
    Circ Res; 1991 Jun; 68(6):1761-7. PubMed ID: 2036724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transmural recording of monophasic action potentials.
    Zhou X; Huang J; Ideker RE
    Am J Physiol Heart Circ Physiol; 2002 Mar; 282(3):H855-61. PubMed ID: 11834479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of extracellular calcium and sodium on depolarization-induced automaticity in guinea pig papillary muscle.
    Katzung BG
    Circ Res; 1975 Jul; 37(1):118-27. PubMed ID: 1149182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Topographical and electrophysiological characteristics of highly excitable S neurones in the myenteric plexus of the guinea-pig ileum.
    Smith TK; Burke EP; Shuttleworth CW
    J Physiol; 1999 Jun; 517 ( Pt 3)(Pt 3):817-30. PubMed ID: 10358121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.