These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 9255818)

  • 1. Asymmetric dioptric power matrices and corresponding thick lenses.
    Keating MP
    Optom Vis Sci; 1997 Jun; 74(6):393-6. PubMed ID: 9255818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dioptric power: its nature and its representation in three- and four-dimensional space.
    Harris WF
    Optom Vis Sci; 1997 Jun; 74(6):349-66. PubMed ID: 9255813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Equivalent dioptric power asymmetry relations for thick astigmatic systems.
    Keating MP
    Optom Vis Sci; 1997 Jun; 74(6):388-92. PubMed ID: 9255817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lateral magnification matrix from the dioptric power matrix formalism in the paraxial case.
    Espinós M; Micó V
    Ophthalmic Physiol Opt; 2013 Jul; 33(4):467-81. PubMed ID: 23711086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical refraction in three-dimensional dioptric space revisited.
    Raasch T
    Optom Vis Sci; 1997 Jun; 74(6):376-80. PubMed ID: 9255815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An easier method to obtain the sphere, cylinder, and axis from an off-axis dioptric power matrix.
    Keating MP
    Am J Optom Physiol Opt; 1980 Oct; 57(10):734-7. PubMed ID: 7446684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Power vectors: an application of Fourier analysis to the description and statistical analysis of refractive error.
    Thibos LN; Wheeler W; Horner D
    Optom Vis Sci; 1997 Jun; 74(6):367-75. PubMed ID: 9255814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A unified paraxial approach to astigmatic optics.
    Harris WF
    Optom Vis Sci; 1999 Jul; 76(7):480-99. PubMed ID: 10445640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lens effectivity in terms of dioptric power matrices.
    Keating MP
    Am J Optom Physiol Opt; 1981 Dec; 58(12):1154-60. PubMed ID: 7325207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping of error cells in clinical measure to symmetric power space.
    Abelman H; Abelman S
    Ophthalmic Physiol Opt; 2007 Sep; 27(5):490-9. PubMed ID: 17718888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical inference on mean dioptric power: asymmetric powers and singular covariance.
    Harris WF
    Ophthalmic Physiol Opt; 1991 Jul; 11(3):263-70. PubMed ID: 1766691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Matrix-based calculation scheme for toric intraocular lenses.
    Langenbucher A; Reese S; Sauer T; Seitz B
    Ophthalmic Physiol Opt; 2004 Nov; 24(6):511-9. PubMed ID: 15491479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tolerance and nature of residual refraction in symmetric power space as principal lens powers and meridians change.
    Abelman H; Abelman S
    Comput Math Methods Med; 2014; 2014():492383. PubMed ID: 25478004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative analysis of eyes and other optical systems in linear optics.
    Harris WF; Evans T; van Gool RD
    Ophthalmic Physiol Opt; 2017 May; 37(3):347-352. PubMed ID: 28326601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of liquid-crystal adaptive-optics to alter the refractive state of the eye.
    Thibos LN; Bradley A
    Optom Vis Sci; 1997 Jul; 74(7):581-7. PubMed ID: 9293528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequential tilt and tilted power of thin lenses.
    Harris WF
    Optom Vis Sci; 2006 Apr; 83(4):249-53. PubMed ID: 16614571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compensation of aniseikonia with toric intraocular lenses and spherocylindrical spectacles.
    Langenbucher A; Reese S; Huber S; Seitz B
    Ophthalmic Physiol Opt; 2005 Jan; 25(1):35-44. PubMed ID: 15649181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Keating's asymmetric dioptric power matrices expressed in terms of sphere, cylinder, axis, and asymmetry.
    Harris WF
    Optom Vis Sci; 1993 Aug; 70(8):666-7. PubMed ID: 8414388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local dioptric power matrix in a progressive addition lens.
    Alonso J; Gómez-Pedrero JA; Bernabeu E
    Ophthalmic Physiol Opt; 1997 Nov; 17(6):522-9. PubMed ID: 9666927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A system matrix for astigmatic optical systems: I. Introduction and dioptric power relations.
    Keating MP
    Am J Optom Physiol Opt; 1981 Oct; 58(10):810-9. PubMed ID: 7304708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.