These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 9255819)
1. Meridional profiles of variance-covariance of symmetric dioptric power: classes of variation that are uniform across the meridians of the eye. Harris WF Optom Vis Sci; 1997 Jun; 74(6):397-413. PubMed ID: 9255819 [TBL] [Abstract][Full Text] [Related]
2. Refractive variation under accommodative demand: curvital and scaled torsional variances and covariance across the meridians of the eye. van Gool RD; Harris WF Optom Vis Sci; 1997 Jun; 74(6):445-51. PubMed ID: 9255825 [TBL] [Abstract][Full Text] [Related]
3. Variability of the refractive state: meridional profiles and uniform variation. Rubin A; Harris WF Optom Vis Sci; 1997 Jun; 74(6):414-9. PubMed ID: 9255820 [TBL] [Abstract][Full Text] [Related]
4. Meridional profiles of variance-covariance of dioptric power. Part 1. The basic theory. Harris WF Ophthalmic Physiol Opt; 1992 Oct; 12(4):467-70. PubMed ID: 1293535 [TBL] [Abstract][Full Text] [Related]
5. Short-term keratometric variation in the human eye. Cronje S; Harris WF Optom Vis Sci; 1997 Jun; 74(6):420-4. PubMed ID: 9255821 [TBL] [Abstract][Full Text] [Related]
6. A unified paraxial approach to astigmatic optics. Harris WF Optom Vis Sci; 1999 Jul; 76(7):480-99. PubMed ID: 10445640 [TBL] [Abstract][Full Text] [Related]
7. Dioptric power: its nature and its representation in three- and four-dimensional space. Harris WF Optom Vis Sci; 1997 Jun; 74(6):349-66. PubMed ID: 9255813 [TBL] [Abstract][Full Text] [Related]
8. Meridional profiles of variance-covariance of dioptric power. Part 2. Profiles representing variation in one or more of sphere, cylinder and axis. Harris WF; Malan DJ Ophthalmic Physiol Opt; 1992 Oct; 12(4):471-7. PubMed ID: 1293536 [TBL] [Abstract][Full Text] [Related]
9. Interconverting the matrix and principal meridional representations of dioptric power in general including powers with nonorthogonal and complex principal meridians. Harris WF Ophthalmic Physiol Opt; 2001 May; 21(3):247-52. PubMed ID: 11396399 [TBL] [Abstract][Full Text] [Related]
10. Direct, vec and other squares, and sample variance-covariance of dioptric power. Harris WF Ophthalmic Physiol Opt; 1990 Jan; 10(1):72-80. PubMed ID: 2330218 [TBL] [Abstract][Full Text] [Related]
11. Tolerance and nature of residual refraction in symmetric power space as principal lens powers and meridians change. Abelman H; Abelman S Comput Math Methods Med; 2014; 2014():492383. PubMed ID: 25478004 [TBL] [Abstract][Full Text] [Related]
12. Error cells for spherical powers in symmetric dioptric power space. Harris WF; Rubin A Optom Vis Sci; 2005 Jul; 82(7):633-6. PubMed ID: 16044077 [TBL] [Abstract][Full Text] [Related]
13. Calculation and least-squares estimation of surface curvature and dioptric power from meridional measurements. Harris WF Ophthalmic Physiol Opt; 1992 Jan; 12(1):58-64. PubMed ID: 1584618 [TBL] [Abstract][Full Text] [Related]
14. Converting principal meridional representation of power to the coordinates of the power matrix using the matrix similarity transform. Abelman H Ophthalmic Physiol Opt; 2006 Jul; 26(4):426-30. PubMed ID: 16792743 [TBL] [Abstract][Full Text] [Related]
15. Representation of dioptric power in Euclidean 3-space. Harris WF Ophthalmic Physiol Opt; 1991 Apr; 11(2):130-6. PubMed ID: 2062537 [TBL] [Abstract][Full Text] [Related]
16. Signs of surface torsion and torsional dioptric power. Harris WF Optom Vis Sci; 1998 Sep; 75(9):670-3. PubMed ID: 9778700 [TBL] [Abstract][Full Text] [Related]
17. Clinical refraction in three-dimensional dioptric space revisited. Raasch T Optom Vis Sci; 1997 Jun; 74(6):376-80. PubMed ID: 9255815 [TBL] [Abstract][Full Text] [Related]
18. Multimeridional refraction: dependence of the measurement accuracy on the number of meridians refracted. Oechsner U; Kusel R Optom Vis Sci; 1997 Jun; 74(6):425-33. PubMed ID: 9255822 [TBL] [Abstract][Full Text] [Related]
19. Elements of the dioptric power matrix and the concept of torsional power: a reinterpretation. Harris WF Optom Vis Sci; 1990 Jan; 67(1):36-7. PubMed ID: 2308750 [TBL] [Abstract][Full Text] [Related]
20. Mapping of error cells in clinical measure to symmetric power space. Abelman H; Abelman S Ophthalmic Physiol Opt; 2007 Sep; 27(5):490-9. PubMed ID: 17718888 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]