BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 9255973)

  • 1. Relationship between the glutamate production and the activity of 2-oxoglutarate dehydrogenase in Brevibacterium lactofermentum.
    Kawahara Y; Takahashi-Fuke K; Shimizu E; Nakamatsu T; Nakamori S
    Biosci Biotechnol Biochem; 1997 Jul; 61(7):1109-12. PubMed ID: 9255973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Glutamate production of coryneform bacteria].
    Kimura E; Kawahara Y; Nakamatsu T
    Tanpakushitsu Kakusan Koso; 1997 Dec; 42(16):2633-40. PubMed ID: 9404159
    [No Abstract]   [Full Text] [Related]  

  • 3. Role of biotin in the production of lysine by Brevibacterium lactofermentum.
    Ko YT; Chipley JR
    Microbios; 1984; 40(161-162):161-71. PubMed ID: 6434904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and study of the composition of a peptidoglycan complex excreted by the biotin-requiring mutant of Brevibacterium divaricatum NRRL-2311 in the presence of penicillin.
    Keglević D; Ladesić B; Hadzija O; Tomasić J; Valinger Z; Pokorny M; Naumski R
    Eur J Biochem; 1974 Mar; 42(2):389-400. PubMed ID: 4829438
    [No Abstract]   [Full Text] [Related]  

  • 5. A dtsR gene-disrupted mutant of Brevibacterium lactofermentum requires fatty acids for growth and efficiently produces L-glutamate in the presence of an excess of biotin.
    Kimura E; Abe C; Kawahara Y; Nakamatsu T; Tokuda H
    Biochem Biophys Res Commun; 1997 May; 234(1):157-61. PubMed ID: 9168981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ciprofloxacin triggered glutamate production by Corynebacterium glutamicum.
    Lubitz D; Wendisch VF
    BMC Microbiol; 2016 Oct; 16(1):235. PubMed ID: 27717325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. OdhI dephosphorylation kinetics during different glutamate production processes involving Corynebacterium glutamicum.
    Boulahya KA; Guedon E; Delaunay S; Schultz C; Boudrant J; Bott M; Goergen JL
    Appl Microbiol Biotechnol; 2010 Aug; 87(5):1867-74. PubMed ID: 20449744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental evidence that maleic acid markedly compromises glutamate oxidation through inhibition of glutamate dehydrogenase and α-ketoglutarate dehydrogenase activities in kidney of developing rats.
    Roginski AC; Cecatto C; Wajner SM; Camera FD; Castilho RF; Wajner M; Amaral AU
    Mol Cell Biochem; 2019 Aug; 458(1-2):99-112. PubMed ID: 31032535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of strain-specific genes in glutamic acid-producing Corynebacterium glutamicum ssp. lactofermentum AJ 1511.
    Nishio Y; Koseki C; Tonouchi N; Matsui K; Sugimoto S; Usuda Y
    J Gen Appl Microbiol; 2017 Jul; 63(3):157-164. PubMed ID: 28392541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study of flux redistribution of metabolic pathway in glutamate production by two coryneform bacteria.
    Shirai T; Nakato A; Izutani N; Nagahisa K; Shioya S; Kimura E; Kawarabayasi Y; Yamagishi A; Gojobori T; Shimizu H
    Metab Eng; 2005 Mar; 7(2):59-69. PubMed ID: 15781416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of biotin on the bacterial formation of glutamic acid. I. Glutamate formation and cellular premeability of amino acids.
    SHIIO I; OTSUKA SI; TAKAHASHI M
    J Biochem; 1962 Jan; 51():56-62. PubMed ID: 13911888
    [No Abstract]   [Full Text] [Related]  

  • 12. Molecular cloning of a novel gene, dtsR, which rescues the detergent sensitivity of a mutant derived from Brevibacterium lactofermentum.
    Kimura E; Abe C; Kawahara Y; Nakamatsu T
    Biosci Biotechnol Biochem; 1996 Oct; 60(10):1565-70. PubMed ID: 8987652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Positive correlation between rat brain glutamate concentrations and mitochondrial 2-oxoglutarate dehydrogenase activity.
    Mkrtchyan GV; Graf A; Trofimova L; Ksenofontov A; Baratova L; Bunik V
    Anal Biochem; 2018 Jul; 552():100-109. PubMed ID: 29326069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of nicotinamide adenine dinucleotide phosphate-specific glutamate dehydrogenase from Brevibacterium flavum, a glutamate-producing bacterium.
    Shiio I; Ozaki H
    J Biochem; 1970 Nov; 68(5):633-47. PubMed ID: 4394939
    [No Abstract]   [Full Text] [Related]  

  • 15. [Effect of antibiotics on glutamic acid biosynthesis by Brevibacterium flavum].
    Pham LD; Kaptereva IuV; Pisareva MS
    Prikl Biokhim Mikrobiol; 1972; 8(3):319-22. PubMed ID: 4655593
    [No Abstract]   [Full Text] [Related]  

  • 16. Isolation procedure and properties of monomer unit from lysozyme digest of peptidoglycan complex excreted into the medium by penicillin-treated Brevibacterium divaricatum mutant.
    Keglević D; Ladesić B; Tomasić J; Valinger Z; Naumski R
    Biochim Biophys Acta; 1979 Jun; 585(2):273-81. PubMed ID: 256515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo 15N NMR studies of regulation of nitrogen assimilation and amino acid production by Brevibacterium lactofermentum.
    Haran N; Kahana ZE; Lapidot A
    J Biol Chem; 1983 Nov; 258(21):12929-33. PubMed ID: 6630214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CONTROL OF GLUTAMATE OXIDATION IN BRAIN AND LIVER MITOCHONDRIAL SYSTEMS.
    BALAZS R
    Biochem J; 1965 May; 95(2):497-508. PubMed ID: 14340100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutamate production by Corynebacterium glutamicum: dependence on the oxoglutarate dehydrogenase inhibitor protein OdhI and protein kinase PknG.
    Schultz C; Niebisch A; Gebel L; Bott M
    Appl Microbiol Biotechnol; 2007 Sep; 76(3):691-700. PubMed ID: 17437098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium and 2-oxoglutarate-mediated control of aspartate formation by rat heart mitochondria.
    Scaduto RC
    Eur J Biochem; 1994 Aug; 223(3):751-8. PubMed ID: 7914488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.