These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 9256002)

  • 1. Simultaneous measurement of stiffness and energy absorptive properties of articular cartilage and subchondral trabecular bone.
    Røhl L; Linde F; Odgaard A; Hvid I
    Proc Inst Mech Eng H; 1997; 211(3):257-64. PubMed ID: 9256002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy absorptive properties of human trabecular bone specimens during axial compression.
    Linde F; Hvid I; Pongsoipetch B
    J Orthop Res; 1989; 7(3):432-9. PubMed ID: 2703935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elastic and viscoelastic properties of trabecular bone by a compression testing approach.
    Linde F
    Dan Med Bull; 1994 Apr; 41(2):119-38. PubMed ID: 8039429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative studies of human subchondral cancellous bone. Its relationship to the state of its overlying cartilage.
    Pugh JW; Radin EL; Rose RM
    J Bone Joint Surg Am; 1974 Mar; 56(2):313-21. PubMed ID: 4452691
    [No Abstract]   [Full Text] [Related]  

  • 5. Mechanical anisotropy of the human knee articular cartilage in compression.
    Jurvelin JS; Buschmann MD; Hunziker EB
    Proc Inst Mech Eng H; 2003; 217(3):215-9. PubMed ID: 12807162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Importance of material properties and porosity of bone on mechanical response of articular cartilage in human knee joint--a two-dimensional finite element study.
    Venäläinen MS; Mononen ME; Jurvelin JS; Töyräs J; Virén T; Korhonen RK
    J Biomech Eng; 2014 Dec; 136(12):121005. PubMed ID: 25322202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A finite element model of an idealized diarthrodial joint to investigate the effects of variation in the mechanical properties of the tissues.
    Dar FH; Aspden RM
    Proc Inst Mech Eng H; 2003; 217(5):341-8. PubMed ID: 14558646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous ultrasound measurement of articular cartilage and subchondral bone.
    Aula AS; Töyräs J; Tiitu V; Jurvelin JS
    Osteoarthritis Cartilage; 2010 Dec; 18(12):1570-6. PubMed ID: 20950692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shock absorbing ability of articular cartilage and subchondral bone under impact compression.
    Malekipour F; Whitton C; Oetomo D; Lee PV
    J Mech Behav Biomed Mater; 2013 Oct; 26():127-35. PubMed ID: 23746699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Indentation instrument for the measurement of cartilage stiffness under arthroscopic control.
    Lyyra T; Jurvelin J; Pitkänen P; Väätäinen U; Kiviranta I
    Med Eng Phys; 1995 Jul; 17(5):395-9. PubMed ID: 7670702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 characteristics of human knee articular cartilage: topographical variation and relationships to mechanical properties.
    Kurkijärvi JE; Nissi MJ; Kiviranta I; Jurvelin JS; Nieminen MT
    Magn Reson Med; 2004 Jul; 52(1):41-6. PubMed ID: 15236365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical strength of trabecular bone at the knee.
    Hvid I
    Dan Med Bull; 1988 Aug; 35(4):345-65. PubMed ID: 3048922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical properties of articular cartilage covered by the meniscus.
    Thambyah A; Nather A; Goh J
    Osteoarthritis Cartilage; 2006 Jun; 14(6):580-8. PubMed ID: 16621620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of constraint on the mechanical behaviour of trabecular bone specimens.
    Linde F; Hvid I
    J Biomech; 1989; 22(5):485-90. PubMed ID: 2777823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elastic modulus of calcified cartilage is an order of magnitude less than that of subchondral bone.
    Mente PL; Lewis JL
    J Orthop Res; 1994 Sep; 12(5):637-47. PubMed ID: 7931780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stiffness behaviour of trabecular bone specimens.
    Linde F; Hvid I
    J Biomech; 1987; 20(1):83-9. PubMed ID: 3558433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative study of articular cartilage and subchondral bone remodeling in the knee joint of dogs after strenuous running training.
    Oettmeier R; Arokoski J; Roth AJ; Helminen HJ; Tammi M; Abendroth K
    J Bone Miner Res; 1992 Dec; 7 Suppl 2():S419-24. PubMed ID: 1485550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous evaluation of articular cartilage and subchondral bone from immobilized knee in rats by photoacoustic imaging system.
    Hagiwara Y; Izumi T; Yabe Y; Sato M; Sonofuchi K; Kanazawa K; Koide M; Saijo Y; Itoi E
    J Orthop Sci; 2015 Mar; 20(2):397-402. PubMed ID: 25592029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The short-term compressive properties of adult human articular cartilage.
    Bader DL; Kempson GE
    Biomed Mater Eng; 1994; 4(3):245-56. PubMed ID: 7950872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viscoelasticity of articular cartilage: Analysing the effect of induced stress and the restraint of bone in a dynamic environment.
    Lawless BM; Sadeghi H; Temple DK; Dhaliwal H; Espino DM; Hukins DWL
    J Mech Behav Biomed Mater; 2017 Nov; 75():293-301. PubMed ID: 28763685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.