These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 9256111)

  • 1. Experimental determination of the BOLD field strength dependence in vessels and tissue.
    Gati JS; Menon RS; Ugurbil K; Rutt BK
    Magn Reson Med; 1997 Aug; 38(2):296-302. PubMed ID: 9256111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cortical depth-dependent gradient-echo and spin-echo BOLD fMRI at 9.4T.
    Zhao F; Wang P; Kim SG
    Magn Reson Med; 2004 Mar; 51(3):518-24. PubMed ID: 15004793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tesla gradient recalled echo characteristics of photic stimulation-induced signal changes in the human primary visual cortex.
    Menon RS; Ogawa S; Tank DW; Uğurbil K
    Magn Reson Med; 1993 Sep; 30(3):380-6. PubMed ID: 8412612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microvascular BOLD contribution at 4 and 7 T in the human brain: gradient-echo and spin-echo fMRI with suppression of blood effects.
    Duong TQ; Yacoub E; Adriany G; Hu X; Ugurbil K; Kim SG
    Magn Reson Med; 2003 Jun; 49(6):1019-27. PubMed ID: 12768579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blood oxygen level-dependent magnetic resonance imaging of the kidneys: influence of spatial resolution on the apparent R2* transverse relaxation rate of renal tissue.
    Rossi C; Sharma P; Pazahr S; Alkadhi H; Nanz D; Boss A
    Invest Radiol; 2013 Sep; 48(9):671-7. PubMed ID: 23571833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blood oxygenation level-dependent (BOLD) total and extravascular signal changes and ΔR2* in human visual cortex at 1.5, 3.0 and 7.0 T.
    Donahue MJ; Hoogduin H; van Zijl PC; Jezzard P; Luijten PR; Hendrikse J
    NMR Biomed; 2011 Jan; 24(1):25-34. PubMed ID: 21259367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. fMRI at 1.5, 3 and 7 T: characterising BOLD signal changes.
    van der Zwaag W; Francis S; Head K; Peters A; Gowland P; Morris P; Bowtell R
    Neuroimage; 2009 Oct; 47(4):1425-34. PubMed ID: 19446641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Venous blood effects in spin-echo fMRI of human brain.
    Oja JM; Gillen J; Kauppinen RA; Kraut M; van Zijl PC
    Magn Reson Med; 1999 Oct; 42(4):617-26. PubMed ID: 10502748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurements of tissue T1 spin-lattice relaxation time and discrimination of large draining veins using transient EPI data sets in BOLD-weighted fMRI acquisitions.
    Mazaheri Y; Biswal BB; Ward BD; Hyde JS
    Neuroimage; 2006 Aug; 32(2):603-15. PubMed ID: 16713305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model.
    Ogawa S; Menon RS; Tank DW; Kim SG; Merkle H; Ellermann JM; Ugurbil K
    Biophys J; 1993 Mar; 64(3):803-12. PubMed ID: 8386018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of parenchymal extravascular R2* and tissue oxygen extraction fraction using multi-echo vascular space occupancy MRI at 7 T.
    Cheng Y; van Zijl PC; Hua J
    NMR Biomed; 2015 Feb; 28(2):264-71. PubMed ID: 25521948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic field strength increase yields significantly greater contrast-to-noise ratio increase: Measured using BOLD contrast in the primary visual area.
    Okada T; Yamada H; Ito H; Yonekura Y; Sadato N
    Acad Radiol; 2005 Feb; 12(2):142-7. PubMed ID: 15721590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypercapnic normalization of BOLD fMRI: comparison across field strengths and pulse sequences.
    Cohen ER; Rostrup E; Sidaros K; Lund TE; Paulson OB; Ugurbil K; Kim SG
    Neuroimage; 2004 Oct; 23(2):613-24. PubMed ID: 15488411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing neuronal activation by functional quantitative susceptibility mapping under a visual paradigm: A group level comparison with BOLD fMRI and PET.
    Özbay PS; Warnock G; Rossi C; Kuhn F; Akin B; Pruessmann KP; Nanz D
    Neuroimage; 2016 Aug; 137():52-60. PubMed ID: 27155125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spin-echo fMRI in humans using high spatial resolutions and high magnetic fields.
    Yacoub E; Duong TQ; Van De Moortele PF; Lindquist M; Adriany G; Kim SG; Uğurbil K; Hu X
    Magn Reson Med; 2003 Apr; 49(4):655-64. PubMed ID: 12652536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical noise model for oxygenation-sensitive magnetic resonance imaging.
    Wu G; Li SJ
    Magn Reson Med; 2005 May; 53(5):1046-54. PubMed ID: 15844094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BOLD specificity and dynamics evaluated in humans at 7 T: comparing gradient-echo and spin-echo hemodynamic responses.
    Siero JC; Ramsey NF; Hoogduin H; Klomp DW; Luijten PR; Petridou N
    PLoS One; 2013; 8(1):e54560. PubMed ID: 23336008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-echo fMRI of the cortical laminae in humans at 7 T.
    Koopmans PJ; Barth M; Orzada S; Norris DG
    Neuroimage; 2011 Jun; 56(3):1276-85. PubMed ID: 21338697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A critical assessment of data quality and venous effects in sub-millimeter fMRI.
    Kay K; Jamison KW; Vizioli L; Zhang R; Margalit E; Ugurbil K
    Neuroimage; 2019 Apr; 189():847-869. PubMed ID: 30731246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of functional MRI for detection, decoding and high-resolution imaging of the response patterns of cortical columns.
    Chaimow D; Uğurbil K; Shmuel A
    Neuroimage; 2018 Jan; 164():67-99. PubMed ID: 28461061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.